This is the first comprehensive guide to the principles and techniques of chemical looping partial oxidation. With authoritative explanations from a pioneer of the chemical looping process, you will: • Gain a holistic overview of metal oxide reaction engineering, with coverage of ionic diffusion, nanostructure formation, morphological evolution, phase equilibrium, and recyclability properties of metal oxides during redox reactions • Learn about the gasification of solid fuels, the reforming of natural gas, and the catalytic conversion of methane to olefins • Understand the importance of reactor design and process integration in enabling metal oxide oxygen carriers to produce desired products • Discover other applications of catalytic metal oxides, including the production of maleic anhydride and solar energy conversions Aspen Plus® simulation software and results accompany the book online. This is an invaluable reference for researchers and industry professionals in the fields of chemical, energy and environmental engineering, and students studying process design and optimization.
This comprehensive and up-to-date handbook on this highly topical field, covering everything from new process concepts to commercial applications. Describing novel developments as well as established methods, the authors start with the evaluation of different oxygen carriers and subsequently illuminate various technological concepts for the energy conversion process. They then go on to discuss the potential for commercial applications in gaseous, coal, and fuel combustion processes in industry. The result is an invaluable source for every scientist in the field, from inorganic chemists in academia to chemical engineers in industry.
This book highlights the processes of biomass thermochemical conversion, covering topics from combustion and gasification, to pyrolysis and liquefaction. Heat, power, biofuels and green chemicals can all be produced by these thermochemical processes. The different scales of investigation are presented: from the bioenergy chains, to the reactors and molecular mechanisms. The author uses current research and data to present bioenergy chains from forest to final use, including the biomass supply chains, as well as the life cycle assessment of different process chains. Biomass conversion reactors are also presented, detailing their technologies for combustion, gasification and syngas up-grading systems, pyrolysis and bio-oil upgrading. The physical-chemical mechanisms occurring in all these reactors are presented highlighting the main pathways for gas, char and bio-oil formation from biomass. This book offers an overview of biomass valorization for students, engineers or developers in chemistry, chemical, environmental or mechanical engineering.
From Methane to Hydrogen-Making the Switch to a Cleaner Fuel Source The world's overdependence on fossil fuels has created environmental problems, such as air pollution and global warming, as well as political and economic unrest. With water as its only by-product and its availability in all parts of the world, hydrogen promises to be the next grea
This book offers the current state of knowledge in the field of biofuels, presented by selected research centers from around the world. Biogas from waste production process and areas of application of biomethane were characterized. Also, possibilities of applications of wastes from fruit bunch of oil palm tree and high biomass/bagasse from sorghum and Bermuda grass for second-generation bioethanol were presented. Processes and mechanisms of biodiesel production, including the review of catalytic transesterification process, and careful analysis of kinetics, including bioreactor system for algae breeding, were widely analyzed. Problem of emissivity of NOx from engines fueled by B20 fuel was characterized. The closing chapters deal with the assessment of the potential of biofuels in Turkey, the components of refinery systems for production of biodegradable plastics from biomass. Also, a chapter concerning the environmental conditions of synthesis gas production as a universal raw material for the production of alternative fuels was also added.
Advances in Hydrogen Production, Storage and Distribution reviews recent developments in this key component of the emerging "hydrogen economy," an energy infrastructure based on hydrogen. Since hydrogen can be produced without using fossil fuels, a move to such an economy has the potential to reduce greenhouse gas emissions and improve energy security. However, such a move also requires the advanced production, storage and usage techniques discussed in this book. Part one introduces the fundamentals of hydrogen production, storage, and distribution, including an overview of the development of the necessary infrastructure, an analysis of the potential environmental benefits, and a review of some important hydrogen production technologies in conventional, bio-based, and nuclear power plants. Part two focuses on hydrogen production from renewable resources, and includes chapters outlining the production of hydrogen through water electrolysis, photocatalysis, and bioengineered algae. Finally, part three covers hydrogen production using inorganic membrane reactors, the storage of hydrogen, fuel cell technology, and the potential of hydrogen as a fuel for transportation. Advances in Hydrogen Production, Storage and Distribution provides a detailed overview of the components and challenges of a hydrogen economy. This book is an invaluable resource for research and development professionals in the energy industry, as well as academics with an interest in this important subject. - Reviews developments and research in this dynamic area - Discusses the challenges of creating an infrastructure to store and distribute hydrogen - Reviews the production of hydrogen using electrolysis and photo-catalytic methods
Fluidized bed (FB) combustion and gasification are advanced techniques for fuel flexible, high efficiency and low emission conversion. Fuels are combusted or gasified as a fluidized bed suspended by jets with sorbents that remove harmful emissions such as SOx. CO2 capture can also be incorporated. Fluidized bed technologies for near-zero emission combustion and gasification provides an overview of established FB technologies while also detailing recent developments in the field.Part one, an introductory section, reviews fluidization science and FB technologies and includes chapters on particle characterization and behaviour, properties of stationary and circulating fluidized beds, heat and mass transfer and attrition in FB combustion and gasification systems. Part two expands on this introduction to explore the fundamentals of FB combustion and gasification including the conversion of solid, liquid and gaseous fuels, pollutant emission and reactor design and scale up. Part three highlights recent advances in a variety of FB combustion and gasification technologies before part four moves on to focus on emerging CO2 capture technologies. Finally, part five explores other applications of FB technology including (FB) petroleum refining and chemical production.Fluidized bed technologies for near-zero emission combustion and gasification is a technical resource for power plant operators, industrial engineers working with fluidized bed combustion and gasification systems and researchers, scientists and academics in the field. - Examines the fundamentals of fluidized bed (FB) technologies, including the conversion of solid, liquid and gaseous fuels - Explores recent advances in a variety of technologies such as pressurized FB combustion, and the measurement, monitoring and control of FB combustion and gasification - Discusses emerging technologies and examines applications of FB in other processes
This book offers comprehensive coverage of the design, analysis, and operational aspects of biomass gasification, the key technology enabling the production of biofuels from all viable sources--some examples being sugar cane and switchgrass. This versatile resource not only explains the basic principles of energy conversion systems, but also provides valuable insight into the design of biomass gasifiers. The author provides many worked out design problems, step-by-step design procedures and real data on commercially operating systems. After fossil fuels, biomass is the most widely used fuel in the world. Biomass resources show a considerable potential in the long term if residues are properly handled and dedicated energy crops are grown. Includes step-by-step design procedures and case studies for Biomass GasificationProvides worked process flow diagrams for gasifier design. Covers integration with other technologies (e.g. gas turbine, engine, fuel cells)
This book addresses the science and technology of the gasification process and the production of electricity, synthetic fuels and other useful chemicals. Pursuing a holistic approach, it covers the fundamentals of gasification and its various applications. In addition to discussing recent advances and outlining future directions, it covers advanced topics such as underground coal gasification and chemical looping combustion, and describes the state-of-the-art experimental techniques, modeling and numerical simulations, environmentally friendly approaches, and technological challenges involved. Written in an easy-to-understand format with a comprehensive glossary and bibliography, the book offers an ideal reference guide to coal and biomass gasification for beginners, engineers and researchers involved in designing or operating gasification plants.