Chemical Engineering III includes the proceedings of the 3rd SREE Conference on Chemical Engineering (CCE 2013, Hong Kong, 28-29 December 2013) and the 2nd SREE Workshop on Energy, Environment and Engineering (WEEE 2013, which was a part of CCE 2013). The contributions discuss current practical challenges and solutions in Chemical Engineering, and
Properties of chemical compounds and their mixtures are needed in almost every aspect of process and product design. When the use of experimental data is not possible, one of the most widely used options in the use of property estimation models. Computer Aided Property Estimation for Process and Product Design provides a presentation of the most suitable property estimation models available today as well as guidelines on how to select an appropriate model. Problems that users are faced with, such as: which models to use and what their accuracy is, are addressed using a systematical approach to property estimation. The volume includes contributions from leading experts from academia and industry. A wide spectrum of properties and phase equilibria types is covered, making it indispensable for research, development and educational purposes.* This book presents the latest developments in computational modelling for thermodynamic property estimation.* It combines theory with practice and includes illustrative examples of software applications. * The questions users of property models are faced with are addressed comprehensively.
This book provides readers with the most current, accurate, and practical fluid mechanics related applications that the practicing BS level engineer needs today in the chemical and related industries, in addition to a fundamental understanding of these applications based upon sound fundamental basic scientific principles. The emphasis remains on problem solving, and the new edition includes many more examples.
Chemical Product Design: Towards a Perspective through Case Studies provides a framework for chemical product design problems which are clearly defined together with different solution approaches. This book covers the latest methods and tools currently available in the field and discusses future challenges that the chemical industry is faced with. It focuses on important issues of chemical product design and provides a good overview on industrial chemical product design problems through case studies supplied by leading experts. The editors of Chemical Product Design teach chemical product design at graduate level courses and also serve as consultants for various chemical companies. They have also developed experimental techniques for chemical product design as well as computer-aided design methods and tools. - Highlights important issues of chemical product design through case studies - Case studies supplied by leading experts in chemical product design - Provides a complete framework for chemical product design
Chemical Engineering and Chemical Process Technology is a theme component of Encyclopedia of Chemical Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty Encyclopedias. Chemical engineering is a branch of engineering, dealing with processes in which materials undergo changes in their physical or chemical state. These changes may concern size, energy content, composition and/or other application properties. Chemical engineering deals with many processes belonging to chemical industry or related industries (petrochemical, metallurgical, food, pharmaceutical, fine chemicals, coatings and colors, renewable raw materials, biotechnological, etc.), and finds application in manufacturing of such products as acids, alkalis, salts, fuels, fertilizers, crop protection agents, ceramics, glass, paper, colors, dyestuffs, plastics, cosmetics, vitamins and many others. It also plays significant role in environmental protection, biotechnology, nanotechnology, energy production and sustainable economical development. The Theme on Chemical Engineering and Chemical Process Technology deals, in five volumes and covers several topics such as: Fundamentals of Chemical Engineering; Unit Operations – Fluids; Unit Operations – Solids; Chemical Reaction Engineering; Process Development, Modeling, Optimization and Control; Process Management; The Future of Chemical Engineering; Chemical Engineering Education; Main Products, which are then expanded into multiple subtopics, each as a chapter. These five volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs.
Tools for Chemical Product Design: From Consumer Products to Biomedicine describes the challenges involved in systematic product design across a variety of industries and provides a comprehensive overview of mathematical tools aimed at the design of chemical products, from molecular design to customer products. Chemical product design has become increasingly important over the past decade and includes a wide range of sectors including gasoline additives and blends in the petroleum industry, active ingredients and excipients in the pharmaceutical industry, and a variety of consumer products and specialty chemicals. Traditionally, such products have been designed through trial and error methods, which not only are time-consuming, but more importantly only provide limited knowledge that can be translated into next generation products. - Features an impressive collection of contributions from leading researchers in the field - Presents the latest tools available across a variety of industries - Describes the challenges involved in systematic product design as well as the latest methods for solving such problems - Covers a wide range of sectors including gasoline additives and blends in the petroleum industry, active ingredients and excipients in the pharmaceutical industry, and a variety of consumer products and specialty chemicals
CAMD or Computer Aided Molecular Design refers to the design of molecules with desirable properties. That is, through CAMD, one determines molecules that match a specified set of (target) properties. CAMD as a technique has a very large potential as in principle, all kinds of chemical, bio-chemical and material products can be designed through this technique.This book mainly deals with macroscopic properties and therefore does not cover molecular design of large, complex chemicals such as drugs. While books have been written on computer aided molecular design relating to drugs and large complex chemicals, a book on systematic formulation of CAMD problems and solutions, with emphasis on theory and practice, which helps one to learn, understand and apply the technique is currently unavailable.·This title brings together the theoretical aspects related to Computer Aided Molecular Design, the different techniques that have been developed and the different applications that have been reported. ·Contributing authors are among the leading researchers and users of CAMD·First book available giving a systematic formulation of CAMD problems and solutions
Environmental engineering has a leading role in the elimination of ecological threats, and can deal with a wide range of technical and technological problems due to its interdisciplinary character. It uses the knowledge of the basic sciences biology, chemistry, biochemistry and physics to neutralize pollution in all the elements of the environm