Disinfection By-products in Drinking Water

Disinfection By-products in Drinking Water

Author: M.N.V. Prasad

Publisher: Butterworth-Heinemann

Published: 2020-02-21

Total Pages: 490

ISBN-13: 0081029772

DOWNLOAD EBOOK

Disinfection Byproducts in Drinking Water: Detection and Treatment presents cutting-edge research on how to understand the procedures, processes and considerations for detecting and treating disinfection by-products from drinking water, swimming pool water, and wastewater. The book begins with an overview of the different groups of Disinfection Byproducts (DBPs), such as: Trihalomethanes (THM), Halo acetic acids, and Haloacetonitrile (HAN). This coverage is quickly followed by a clear and rigorous exposition of the latest methods and technologies for the characterization, occurrence, formation, transformation and removal of DBPs in drinking water. Other chapters focus on ultraviolet-visible spectroscopy, electron spin resonance, and gas chromatography-mass spectrometry. Researchers will find a valuable resource to a breath of topics for DBP detection and treatment, including various recent techniques, such as microfiltration, nanofiltration membrane and nanotechnology.


Chemistry of Ozone in Water and Wastewater Treatment

Chemistry of Ozone in Water and Wastewater Treatment

Author: Clemens von Sonntag

Publisher: IWA Publishing

Published: 2012-08-31

Total Pages: 306

ISBN-13: 1843393131

DOWNLOAD EBOOK

Even though ozone has been applied for a long time for disinfection and oxidation in water treatment, there is lack of critical information related to transformation of organic compounds. This has become more important in recent years, because there is considerable concern about the formation of potentially harmful degradation products as well as oxidation products from the reaction with the matrix components. In recent years, a wealth of information on the products that are formed has accumulated, and substantial progress in understanding mechanistic details of ozone reactions in aqueous solution has been made. Based on the latter, this may allow us to predict the products of as yet not studied systems and assist in evaluating toxic potentials in case certain classes are known to show such effects. Keeping this in mind, Chemistry of Ozone in Water and Wastewater Treatment: From Basic Principles to Applications discusses mechanistic details of ozone reactions as much as they are known to date and applies them to the large body of studies on micropollutant degradation (such as pharmaceuticals and endocrine disruptors) that is already available. Extensively quoting the literature and updating the available compilation of ozone rate constants gives the reader a text at hand on which his research can be based. Moreover, those that are responsible for planning or operation of ozonation steps in drinking water and wastewater treatment plants will find salient information in a compact form that otherwise is quite disperse. A critical compilation of rate constants for the various classes of compounds is given in each chapter, including all the recent publications. This is a very useful source of information for researchers and practitioners who need kinetic information on emerging contaminants. Furthermore, each chapter contains a large selection of examples of reaction mechanisms for the transformation of micropollutants such as pharmaceuticals, pesticides, fuel additives, solvents, taste and odor compounds, cyanotoxins. Authors: Prof. Dr. Clemens von Sonntag, Max-Planck-Institut für Bioanorganische Chemie, Mülheim an der Ruhr, and Instrumentelle Analytische Chemie, Universität Duisburg-Essen, Essen, Germany and Prof. Dr. Urs von Gunten, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, and Ecole Polytechnique Federal de Lausanne, Lausanne, Switzerland.


Management of Legionella in Water Systems

Management of Legionella in Water Systems

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2020-02-20

Total Pages: 291

ISBN-13: 030949382X

DOWNLOAD EBOOK

Legionnaires' disease, a pneumonia caused by the Legionella bacterium, is the leading cause of reported waterborne disease outbreaks in the United States. Legionella occur naturally in water from many different environmental sources, but grow rapidly in the warm, stagnant conditions that can be found in engineered water systems such as cooling towers, building plumbing, and hot tubs. Humans are primarily exposed to Legionella through inhalation of contaminated aerosols into the respiratory system. Legionnaires' disease can be fatal, with between 3 and 33 percent of Legionella infections leading to death, and studies show the incidence of Legionnaires' disease in the United States increased five-fold from 2000 to 2017. Management of Legionella in Water Systems reviews the state of science on Legionella contamination of water systems, specifically the ecology and diagnosis. This report explores the process of transmission via water systems, quantification, prevention and control, and policy and training issues that affect the incidence of Legionnaires' disease. It also analyzes existing knowledge gaps and recommends research priorities moving forward.


Water Treatment and Pathogen Control

Water Treatment and Pathogen Control

Author: LeChevallier M.W.

Publisher: World Health Organization

Published: 2004-09-24

Total Pages: 136

ISBN-13: 9241562552

DOWNLOAD EBOOK

Annotation This publication provides a critical analysis of the literature on removal and inactivation of pathogenic microbes in water to aid the water quality specialist and design engineer in making decisions regarding microbial water quality.