Nanostructured Materials for Type III Photovoltaics

Nanostructured Materials for Type III Photovoltaics

Author: Peter Skabara

Publisher: Royal Society of Chemistry

Published: 2017-11-08

Total Pages: 532

ISBN-13: 178801250X

DOWNLOAD EBOOK

Materials for type III solar cells have branched into a series of generic groups. These include organic ‘small molecule’ and polymer conjugated structures, fullerenes, quantum dots, copper indium gallium selenide nanocrystal films, dyes/TiO2 for Grätzel cells, hybrid organic/inorganic composites and perovskites. Whilst the power conversion efficiencies of organic solar cells are modest compared to other type III photovoltaic materials, plastic semiconductors provide a cheap route to manufacture through solution processing and offer flexible devices. However, other types of materials are proving to be compatible with this type of processing whilst providing higher device efficiencies. As a result, the field is experiencing healthy competition between technologies that is pushing progress at a fast rate. In particular, perovskite solar cells have emerged very recently as a highly disruptive technology with power conversion efficiencies now over 20%. Perovskite cells, however, still have to address stability and environmental issues. With such a diverse range of materials, it is timely to capture the different technologies into a single volume of work. This book will give a collective insight into the different roles that nanostructured materials play in type III solar cells. This will be an essential text for those working with any of the devices highlighted above, providing a fundamental understanding and appreciation of the potential and challenges associated with each of these technologies.


Polymer Photovoltaics

Polymer Photovoltaics

Author: Fei Huang

Publisher: Royal Society of Chemistry

Published: 2016

Total Pages: 422

ISBN-13: 1849739870

DOWNLOAD EBOOK

An international perspective on the latest research in polymer solar cell technology.


Indoor Photovoltaics

Indoor Photovoltaics

Author: Monika Freunek Muller

Publisher: John Wiley & Sons

Published: 2020-12-10

Total Pages: 304

ISBN-13: 1119605598

DOWNLOAD EBOOK

This is the first and most comprehensive guide on the modeling, engineering and reliable design of indoor photovoltaics which currently is the most promising and energy efficient power supply for edge nodes for the Internet of Things and other indoor devices. Indoor photovoltaics (IPV) has grown in importance over recent years. This can in part be attributed to the creation of the Internet of Things (IoT) and Artificial Intelligence (AI) along with the vast amounts of data being processed in the field, which has been a massive accelerator for this development. Moreover, since energy conservation is being imposed as the national strategy of many countries and is being set as a top priority throughout the world, understanding and promoting IPV as the most promising indoor energy harvesting source is considered by many to be essential these days. The book provides the engineer and researcher with guidelines, and presents a comprehensive overview of theoretical models, efficiencies, and application design. This unique and groundbreaking book has chapters by leading researchers on: Introduction to micro energy harvesting Introduction to indoor photovoltaics Modeling indoor irradiance Characterization and power measurement of IPV cells Luminescent solar concentrators Organic photovoltaic cells and modules for applications under indoor lighting conditions High-efficiency indoor photovoltaic energy harvesting Indoor photovoltaics based on ALGAAs alloys


The Physics Of Solar Cells

The Physics Of Solar Cells

Author: Jenny A Nelson

Publisher: World Scientific Publishing Company

Published: 2003-05-09

Total Pages: 387

ISBN-13: 1848168233

DOWNLOAD EBOOK

This book provides a comprehensive introduction to the physics of the photovoltaic cell. It is suitable for undergraduates, graduate students, and researchers new to the field. It covers: basic physics of semiconductors in photovoltaic devices; physical models of solar cell operation; characteristics and design of common types of solar cell; and approaches to increasing solar cell efficiency. The text explains the terms and concepts of solar cell device physics and shows the reader how to formulate and solve relevant physical problems. Exercises and worked solutions are included.


Organic Solar Cells

Organic Solar Cells

Author: Wolfgang Tress

Publisher: Springer

Published: 2014-11-22

Total Pages: 474

ISBN-13: 3319100971

DOWNLOAD EBOOK

This book covers in a textbook-like fashion the basics or organic solar cells, addressing the limits of photovoltaic energy conversion and giving a well-illustrated introduction to molecular electronics with focus on the working principle and characterization of organic solar cells. Further chapters based on the author’s dissertation focus on the electrical processes in organic solar cells by presenting a detailed drift-diffusion approach to describe exciton separation and charge-carrier transport and extraction. The results, although elaborated on small-molecule solar cells and with focus on the zinc phthalocyanine: C60 material system, are of general nature. They propose and demonstrate experimental approaches for getting a deeper understanding of the dominating processes in amorphous thin-film based solar cells in general. The main focus is on the interpretation of the current-voltage characteristics (J-V curve). This very standard measurement technique for a solar cell reflects the electrical processes in the device. Comparing experimental to simulation data, the author discusses the reasons for S-Shaped J-V curves, the role of charge carrier mobilities and energy barriers at interfaces, the dominating recombination mechanisms, the charge carrier generation profile, and other efficiency-limiting processes in organic solar cells. The book concludes with an illustrative guideline on how to identify reasons for changes in the J-V curve. This book is a suitable introduction for students in engineering, physics, material science, and chemistry starting in the field of organic or hybrid thin-film photovoltaics. It is just as valuable for professionals and experimentalists who analyze solar cell devices.


Emerging Photovoltaic Materials

Emerging Photovoltaic Materials

Author: Santosh K. Kurinec

Publisher: John Wiley & Sons

Published: 2018-12-03

Total Pages: 759

ISBN-13: 1119407680

DOWNLOAD EBOOK

This book covers the recent advances in photovoltaics materials and their innovative applications. Many materials science problems are encountered in understanding existing solar cells and the development of more efficient, less costly, and more stable cells. This important and timely book provides a historical overview, but concentrates primarily on the exciting developments in the last decade. It includes organic and perovskite solar cells, photovoltaics in ferroelectric materials, organic-inorganic hybrid perovskite, materials with improved photovoltaic efficiencies as well as the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally-friendly copper zinc tin sulfide selenides.


Organic Optoelectronic Materials

Organic Optoelectronic Materials

Author: Yongfang Li

Publisher: Springer

Published: 2015-05-30

Total Pages: 402

ISBN-13: 3319168622

DOWNLOAD EBOOK

This volume reviews the latest trends in organic optoelectronic materials. Each comprehensive chapter allows graduate students and newcomers to the field to grasp the basics, whilst also ensuring that they have the most up-to-date overview of the latest research. Topics include: organic conductors and semiconductors; conducting polymers and conjugated polymer semiconductors, as well as their applications in organic field-effect-transistors; organic light-emitting diodes; and organic photovoltaics and transparent conducting electrodes. The molecular structures, synthesis methods, physicochemical and optoelectronic properties of the organic optoelectronic materials are also introduced and described in detail. The authors also elucidate the structures and working mechanisms of organic optoelectronic devices and outline fundamental scientific problems and future research directions. This volume is invaluable to all those interested in organic optoelectronic materials.


Properties of Polymers

Properties of Polymers

Author: D.W. van Krevelen

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 898

ISBN-13: 0444596127

DOWNLOAD EBOOK

Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions summarizes the latest developments regarding polymers, their properties in relation to chemical structure, and methods for estimating and predicting numerical properties from chemical structure. In particular, it examines polymer electrical properties, magnetic properties, and mechanical properties, as well as their crystallization and environmental behavior and failure. The rheological properties of polymer melts and polymer solutions are also considered. Organized into seven parts encompassing 27 chapters, this book begins with an overview of polymer science and engineering, including the typology of polymers and their properties. It then turns to a discussion of thermophysical properties, from transition temperatures to volumetric and calorimetric properties, along with the cohesive aspects and conformation statistics. It also introduces the reader to the behavior of polymers in electromagnetic and mechanical fields of force. The book covers the quantities that influence the transport of heat, momentum, and matter, particularly heat conductivity, viscosity, and diffusivity; properties that control the chemical stability and breakdown of polymers; and polymer properties as an integral concept, with emphasis on processing and product properties. Readers will find tables that give valuable (numerical) data on polymers and include a survey of the group contributions (increments) of almost every additive function considered. This book is a valuable resource for anyone working on practical problems in the field of polymers, including organic chemists, chemical engineers, polymer processers, polymer technologists, and both graduate and PhD students.


Nanostructured Zinc Oxide

Nanostructured Zinc Oxide

Author: Kamlendra Awasthi

Publisher: Elsevier

Published: 2021-08-10

Total Pages: 781

ISBN-13: 0128189010

DOWNLOAD EBOOK

Nanostructured Zinc Oxide covers the various routes for the synthesis of different types of nanostructured zinc oxide including; 1D (nanorods, nanowires etc.), 2D and 3D (nanosheets, nanoparticles, nanospheres etc.). This comprehensive overview provides readers with a clear understanding of the various parameters controlling morphologies. The book also reviews key properties of ZnO including optical, electronic, thermal, piezoelectric and surface properties and techniques in order to tailor key properties. There is a large emphasis in the book on ZnO nanostructures and their role in optoelectronics. ZnO is very interesting and widely investigated material for a number of applications. This book presents up-to-date information about the ZnO nanostructures-based applications such as gas sensing, pH sensing, photocatalysis, antibacterial activity, drug delivery, and electrodes for optoelectronics. - Reviews methods to synthesize, tailor, and characterize 1D, 2D, and 3D zinc oxide nanostructured materials - Discusses key properties of zinc oxide nanostructured materials including optical, electronic, thermal, piezoelectric, and surface properties - Addresses most relevant zinc oxide applications in optoelectronics such as light-emitting diodes, solar cells, and sensors


Polymer Solar Cells: Molecular Design and Microstructure Control

Polymer Solar Cells: Molecular Design and Microstructure Control

Author: Kui Zhao

Publisher: Frontiers Media SA

Published: 2020-12-10

Total Pages: 106

ISBN-13: 2889661946

DOWNLOAD EBOOK

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.