Comprehensive Nuclear Materials

Comprehensive Nuclear Materials

Author:

Publisher: Elsevier

Published: 2020-07-22

Total Pages: 4871

ISBN-13: 0081028660

DOWNLOAD EBOOK

Materials in a nuclear environment are exposed to extreme conditions of radiation, temperature and/or corrosion, and in many cases the combination of these makes the material behavior very different from conventional materials. This is evident for the four major technological challenges the nuclear technology domain is facing currently: (i) long-term operation of existing Generation II nuclear power plants, (ii) the design of the next generation reactors (Generation IV), (iii) the construction of the ITER fusion reactor in Cadarache (France), (iv) and the intermediate and final disposal of nuclear waste. In order to address these challenges, engineers and designers need to know the properties of a wide variety of materials under these conditions and to understand the underlying processes affecting changes in their behavior, in order to assess their performance and to determine the limits of operation. Comprehensive Nuclear Materials, Second Edition, Seven Volume Set provides broad ranging, validated summaries of all the major topics in the field of nuclear material research for fission as well as fusion reactor systems. Attention is given to the fundamental scientific aspects of nuclear materials: fuel and structural materials for fission reactors, waste materials, and materials for fusion reactors. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource of information. Most of the chapters from the first Edition have been revised and updated and a significant number of new topics are covered in completely new material. During the ten years between the two editions, the challenge for applications of nuclear materials has been significantly impacted by world events, public awareness, and technological innovation. Materials play a key role as enablers of new technologies, and we trust that this new edition of Comprehensive Nuclear Materials has captured the key recent developments. Critically reviews the major classes and functions of materials, supporting the selection, assessment, validation and engineering of materials in extreme nuclear environments Comprehensive resource for up-to-date and authoritative information which is not always available elsewhere, even in journals Provides an in-depth treatment of materials modeling and simulation, with a specific focus on nuclear issues Serves as an excellent entry point for students and researchers new to the field


Fundamental Aspects of Inert Gases in Solids

Fundamental Aspects of Inert Gases in Solids

Author: S.E. Donnelly

Publisher: Springer

Published: 2013-12-20

Total Pages: 458

ISBN-13: 1489936807

DOWNLOAD EBOOK

The NATO Advanced Research Workshop on Fundamental Aspects of Inert Gases in Solids, held at Bonas, France from 16-22 September 1990, was the fifth in a series of meetings that have been held in this topic area since 1979. The Consultants' Meeting in that year at Harwell on Rare Gas Behaviour in Metals and Ionic Solids was followed in 1982 by the Jiilich Inter national Symposium on Fundamental Aspects of Helium in Metals. Two smaller meetings have followed-a CECAM organised workshop on Helium Bubbles in Metals was held at Orsay, France in 1986 while in February 1989, a Topical Symposium on Noble Gases in Metals was held in Las Vegas as part of the large TMS/AIME Spring Meeting. As is well known, the dominating feature of inert gas atoms in most solids is their high heat of solution, leading in most situations to an essentially zero solubility and gas-atom precipita tion. In organising the workshop, one particular aim was to target the researchers in the field of inert-gas/solid interactions from three different areas--namely metals, tritides and nuclear fuels-in order to encourage and foster the cross-fertilisation of approaches and ideas. In these three material classes, the behaviour of inert gases in metals has probably been most studied, partly from technological considerations-the effects of helium production via (n, a) reac tions during neutron irradiation are of importance, particularly in a fusion reactor environ ment-and partly from a more fundamental viewpoint.


Multi-Physics and Multi-Scale Modeling and Simulation Methods for Nuclear Reactor Application

Multi-Physics and Multi-Scale Modeling and Simulation Methods for Nuclear Reactor Application

Author: Xingjie Peng

Publisher: Frontiers Media SA

Published: 2024-02-28

Total Pages: 105

ISBN-13: 2832545378

DOWNLOAD EBOOK

A nuclear reactor operates in an environment where complex multi-physics and multi-scale phenomena exist, and it requires consideration of coupling among neutronics, thermal hydraulics, fuel performance, chemical dynamics, and coupling between the reactor core and first circuit. Safe, reliable, and economical operation can be achieved by leveraging high-fidelity numerical simulation, and proper considerations for coupling among different physics and required to provide powerful numerical simulation tools. In the past simplistic models for some of the physics phenomena are used, with the recent development of advanced numerical methods, software design, and high-performance computing power, the appeal of multi-physics and multi-scale modeling and simulation has been broadened.