Spectroscopic Methods for Nanomaterials Characterization

Spectroscopic Methods for Nanomaterials Characterization

Author: Sabu Thomas

Publisher: Elsevier

Published: 2017-05-19

Total Pages: 446

ISBN-13: 0323461468

DOWNLOAD EBOOK

Nanomaterials Characterization Techniques, Volume Two, part of an ongoing series, offers a detailed analysis of the different types of spectroscopic methods currently being used in nanocharacterization. These include, for example, the Raman spectroscopic method for the characterization of carbon nanotubes (CNTs). This book outlines the different kinds of spectroscopic tools being used for the characterization of nanomaterials and discusses under what conditions each should be used. The book is intended to cover all the major spectroscopic techniques for nanocharacterization, making it an important resource for both the academic community at the research level and the industrial community involved in nanomanufacturing. - Explores how spectroscopy and X-ray-based nanocharacterization techniques are applied in modern industry - Analyzes all the major spectroscopy and X-ray-based nanocharacterization techniques, allowing the reader to choose the best for their situation - Presents a method-orientated approach that explains how to successfully use each technique


Electrochemical Biosensors

Electrochemical Biosensors

Author: Serge Cosnier

Publisher: CRC Press

Published: 2015-01-26

Total Pages: 405

ISBN-13: 9814411477

DOWNLOAD EBOOK

Since four decades, rapid detection and monitoring in clinical and food diagnostics and in environmental and biodefense have paved the way for the elaboration of electrochemical biosensors. Thanks to their adaptability, ease of use in relatively complex samples, and their portability, electrochemical biosensors now are one of the mainstays of analy


Transient Techniques in Electrochemistry

Transient Techniques in Electrochemistry

Author: Digby Macdonald

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 336

ISBN-13: 1461341450

DOWNLOAD EBOOK

The study of electrochemical reactions by relaxation or transient techniques has expanded rapidly over the last two decades. The impetus for the develop ment of these techniques has been the desire to obtain quantitative data on the rates of "fast" electrochemical processes, including those coupled to homogeneous chemical reactions in solution. This has necessarily meant the development of techniques that are capable of delineating the effects of mass transport and charge transfer at very short times. The purpose of this book is to describe how the various transient techniques may be used to obtain the desired information. Emphasis is placed upon the detailed mathematical development of the subject, since this aspect is the most frequently ignored in other texts in this field. In any relaxation or transient technique for the study of rate processes, it is necessary to disturb the reaction from equilibrium or the steady state by applying a perturbing impulse to the system. The system is then allowed to relax to a new equilibrium or steady-state position, and. the transient (i. e. , the response as a function of time) is analyzed to extract the desired kinetic information. In electrochemical studies the heterogeneous rate constants are, in general, dependent upon the potential difference across the interface, so that the perturbing impulse frequently takes the form of a known variation in potential as a function of time.


Electrochromism and Electrochromic Devices

Electrochromism and Electrochromic Devices

Author: Paul Monk

Publisher: Cambridge University Press

Published: 2007-11-15

Total Pages:

ISBN-13: 1139465562

DOWNLOAD EBOOK

Electrochromic materials, both organic and inorganic, have widespread applications in light-attenuation, displays and analysis. Written in an accessible manner, this book provides a comprehensive treatment of all types of electrochromic systems and their many applications. Coverage develops from electrochromic scope and history to new searching presentations of optical quantification and theoretical mechanistic models. Non-electrode electrochromism and photo-electrochromism are summarised, with updated comprehensive reviews of electrochromic oxides (tungsten-trioxide particularly), metal co-ordination complexes and metal-cyanometallates, viologens and other organics; and more recent exotics such as fullerenes, hydrides, and conjugated electroactive polymers are also covered. The book concludes by examining device construction and durability. With an extensive bibliography, recent advances in the field, modern applications and a step-by-step development from simple examples to sophisticated theories, this book is ideal for researchers in materials science, polymer science, electrical engineering, physics, chemistry, bioscience and (applied) optoelectronics.


Immobilized Biocatalysts

Immobilized Biocatalysts

Author: Peter Grunwald

Publisher: MDPI

Published: 2018-11-14

Total Pages: 511

ISBN-13: 3038973181

DOWNLOAD EBOOK

This book is a printed edition of the Special Issue "Immobilized Biocatalysts" that was published in Catalysts


Spectroelectrochemistry

Spectroelectrochemistry

Author: Wolfgang Kaim

Publisher: Royal Society of Chemistry

Published: 2008

Total Pages: 247

ISBN-13: 0854045503

DOWNLOAD EBOOK

A practical guidebook illustrating the applications of spectroelectrochemistry to the understanding of redox reactions through identification of their intermediaries and products.


Photoelectrocatalysis

Photoelectrocatalysis

Author: Leonardo Palmisano

Publisher: Elsevier

Published: 2022-10-21

Total Pages: 488

ISBN-13: 0128242426

DOWNLOAD EBOOK

Photoelectrocatalysis: Fundamentals and Applications presents an in-depth review of the topic for students and researchersworking on photoelectrocatalysis-related subjects from pure chemistry to materials and environmental chemistry inorder to propose applications and new perspectives. The main advantage of a photoelectrocatalytic process is the mildexperimental conditions under which the reactions are carried out, which are often possible at atmospheric pressure androom temperature using cheap and nontoxic solvents (e.g., water), oxidants (e.g., O2 from the air), catalytic materials (e.g.,TiO2 on Ti layer), and the potential exploitation of solar light. This book presents the fundamentals and the applications of photoelectrocatalysis, such as hydrogen production fromwater splitting, the remediation of harmful compounds, and CO2 reduction. Photoelectrocatalytic reactors and lightsources, in addition to kinetic aspects, are presented along with an exploration of the relationship between photocatalysisand electrocatalysis. In addition, photocorrosion issues and the application of selective photoelectrocatalytic organictransformations, which is now a growing field of research, are also reported. Finally, the advantages/disadvantages andfuture perspectives of photoelectrocatalysis are highlighted through the possibility of working at a pilot/industrial scale inenvironmentally friendly conditions. - Presents the fundamentals of photoelectrocatalysis - Outlines photoelectrocatalytic green chemistry - Reviews photoelectrocatalytic remediation of harmful compounds, hydrogen production, and CO2 reduction - Includes photocorrosion, photoelectrocatalytic reactors, and modeling along with kinetic aspects


Springer Handbook of Electrochemical Energy

Springer Handbook of Electrochemical Energy

Author: Cornelia Breitkopf

Publisher: Springer

Published: 2016-12-05

Total Pages: 1019

ISBN-13: 3662466570

DOWNLOAD EBOOK

This comprehensive handbook covers all fundamentals of electrochemistry for contemporary applications. It provides a rich presentation of related topics of electrochemistry with a clear focus on energy technologies. It covers all aspects of electrochemistry starting with theoretical concepts and basic laws of thermodynamics, non-equilibrium thermodynamics and multiscale modeling. It further gathers the basic experimental methods such as potentiometry, reference electrodes, ion-sensitive electrodes, voltammetry and amperometry. The contents cover subjects related to mass transport, the electric double layer, ohmic losses and experimentation affecting electrochemical reactions. These aspects of electrochemistry are especially examined in view of specific energy technologies including batteries, polymer electrolyte and biological fuel cells, electrochemical capacitors, electrochemical hydrogen production and photoelectrochemistry. Organized in six parts, the overall complexity of electrochemistry is presented and makes this handbook an authoritative reference and definitive source for advanced students, professionals and scientists particularly interested in industrial and energy applications.


Analytical Electrochemistry

Analytical Electrochemistry

Author: Joseph Wang

Publisher: John Wiley & Sons

Published: 2004-03-24

Total Pages: 228

ISBN-13: 0471460796

DOWNLOAD EBOOK

The critically acclaimed guide to the principles, techniques, and instruments of electroanalytical chemistry-now expanded and revised Joseph Wang, internationally renowned authority on electroanalytical techniques, thoroughly revises his acclaimed book to reflect the rapid growth the field has experienced in recent years. He substantially expands the theoretical discussion while providing comprehensive coverage of the latest advances through late 1999, introducing such exciting new topics as self-assembled monolayers, DNA biosensors, lab-on-a-chip, detection for capillary electrophoresis, single molecule detection, and sol-gel surface modification. Along with numerous references from the current literature and new worked-out examples, Analytical Electrochemistry, Second Edition offers clear, reader-friendly explanations of the fundamental principles of electrochemical processes as well as important insight into the potential of electroanalysis for problem solving in a wide range of fields, from clinical diagnostics to environmental science. Key topics include: The basics of electrode reactions and the structure of the interfacial region Tools for elucidating electrode reactions and high-resolution surface characterization An overview of finite-current controlled potential techniques Electrochemical instrumentation and electrode materials Principles of potentiometric measurements and ion-selective electrodes Chemical sensors, including biosensors, gas sensors, solid-state devices, and sensor arrays