Chaos: Concepts, Control and Constructive Use

Chaos: Concepts, Control and Constructive Use

Author: Yurii Bolotin

Publisher: Springer Science & Business Media

Published: 2009-08-06

Total Pages: 203

ISBN-13: 3642009379

DOWNLOAD EBOOK

The study of physics has changed in character, mainly due to the passage from the analyses of linear systems to the analyses of nonlinear systems. Such a change began, it goes without saying, a long time ago but the qualitative change took place and boldly evolved after the understanding of the nature of chaos in nonlinear s- tems. The importance of these systems is due to the fact that the major part of physical reality is nonlinear. Linearity appears as a result of the simpli?cation of real systems, and often, is hardly achievable during the experimental studies. In this book, we focus our attention on some general phenomena, naturally linked with nonlinearity where chaos plays a constructive part. The ?rst chapter discusses the concept of chaos. It attempts to describe the me- ing of chaos according to the current understanding of it in physics and mat- matics. The content of this chapter is essential to understand the nature of chaos and its appearance in deterministic physical systems. Using the Turing machine, we formulate the concept of complexity according to Kolmogorov. Further, we state the algorithmic theory of Kolmogorov–Martin-Lof ̈ randomness, which gives a deep understanding of the nature of deterministic chaos. Readers will not need any advanced knowledge to understand it and all the necessary facts and de?nitions will be explained.


Chaos: Concepts, Control and Constructive Use

Chaos: Concepts, Control and Constructive Use

Author: Yurii Bolotin

Publisher: Springer

Published: 2016-10-24

Total Pages: 286

ISBN-13: 3319424963

DOWNLOAD EBOOK

This book offers a short and concise introduction to the many facets of chaos theory. While the study of chaotic behavior in nonlinear, dynamical systems is a well-established research field with ramifications in all areas of science, there is a lot to be learnt about how chaos can be controlled and, under appropriate conditions, can actually be constructive in the sense of becoming a control parameter for the system under investigation, stochastic resonance being a prime example. The present work stresses the latter aspects and, after recalling the paradigm changes introduced by the concept of chaos, leads the reader skillfully through the basics of chaos control by detailing the relevant algorithms for both Hamiltonian and dissipative systems, among others. The main part of the book is then devoted to the issue of synchronization in chaotic systems, an introduction to stochastic resonance, and a survey of ratchet models. In this second, revised and enlarged edition, two more chapters explore the many interfaces of quantum physics and dynamical systems, examining in turn statistical properties of energy spectra, quantum ratchets, and dynamical tunneling, among others. This text is particularly suitable for non-specialist scientists, engineers, and applied mathematical scientists from related areas, wishing to enter the field quickly and efficiently. From the reviews of the first edition: This book is an excellent introduction to the key concepts and control of chaos in (random) dynamical systems [...] The authors find an outstanding balance between main physical ideas and mathematical terminology to reach their audience in an impressive and lucid manner. This book is ideal for anybody who would like to grasp quickly the main issues related to chaos in discrete and continuous time. Henri Schurz, Zentralblatt MATH, Vol. 1178, 2010.


Thermoacoustic Instability

Thermoacoustic Instability

Author: R. I. Sujith

Publisher: Springer Nature

Published: 2021-12-14

Total Pages: 484

ISBN-13: 3030811352

DOWNLOAD EBOOK

This book systematically presents the consolidated findings of the phenomenon of self-organization observed during the onset of thermoacoustic instability using approaches from dynamical systems and complex systems theory. Over the last decade, several complex dynamical states beyond limit cycle oscillations such as quasiperiodicity, frequency-locking, period-n, chaos, strange non-chaos, and intermittency have been discovered in thermoacoustic systems operated in laminar and turbulent flow regimes. During the onset of thermoacoustic instability in turbulent systems, an ordered acoustic field and large coherent vortices emerge from the background of turbulent combustion. This emergence of order from disorder in both temporal and spatiotemporal dynamics is explored in the contexts of synchronization, pattern formation, collective interaction, multifractality, and complex networks. For the past six decades, the spontaneous emergence of large amplitude, self-sustained, tonal oscillations in confined combustion systems, characterized as thermoacoustic instability, has remained one of the most challenging areas of research. The presence of such instabilities continues to hinder the development and deployment of high-performance combustion systems used in power generation and propulsion applications. Even with the advent of sophisticated measurement techniques to aid experimental investigations and vast improvements in computational power necessary to capture flow physics in high fidelity simulations, conventional reductionist approaches have not succeeded in explaining the plethora of dynamical behaviors and the associated complexities that arise in practical combustion systems. As a result, models and theories based on such approaches are limited in their application to mitigate or evade thermoacoustic instabilities, which continue to be among the biggest concerns for engine manufacturers today. This book helps to overcome these limitations by providing appropriate methodologies to deal with nonlinear thermoacoustic oscillations, and by developing control strategies that can mitigate and forewarn thermoacoustic instabilities. The book is also beneficial to scientists and engineers studying the occurrence of several other instabilities, such as flow-induced vibrations, compressor surge, aeroacoustics and aeroelastic instabilities in diverse fluid-mechanical environments, to graduate students who intend to apply dynamical systems and complex systems approach to their areas of research, and to physicists who look for experimental applications of their theoretical findings on nonlinear and complex systems.


Advanced Synchronization Control and Bifurcation of Chaotic Fractional-Order Systems

Advanced Synchronization Control and Bifurcation of Chaotic Fractional-Order Systems

Author: Boulkroune, Abdesselem

Publisher: IGI Global

Published: 2018-05-11

Total Pages: 562

ISBN-13: 152255419X

DOWNLOAD EBOOK

In the recent years, fractional-order systems have been studied by many researchers in the engineering field. It was found that many systems can be described more accurately by fractional differential equations than by integer-order models. Advanced Synchronization Control and Bifurcation of Chaotic Fractional-Order Systems is a scholarly publication that explores new developments related to novel chaotic fractional-order systems, control schemes, and their applications. Featuring coverage on a wide range of topics including chaos synchronization, nonlinear control, and cryptography, this publication is geared toward engineers, IT professionals, researchers, and upper-level graduate students seeking current research on chaotic fractional-order systems and their applications in engineering and computer science.


Chaos Theory Tamed

Chaos Theory Tamed

Author: Garnett Williams

Publisher: CRC Press

Published: 1997-09-09

Total Pages: 518

ISBN-13: 1482295415

DOWNLOAD EBOOK

This text aims to bridge the gap between non-mathematical popular treatments and the distinctly mathematical publications that non- mathematicians find so difficult to penetrate. The author provides understandable derivations or explanations of many key concepts, such as Kolmogrov-Sinai entropy, dimensions, Fourier analysis, and Lyapunov exponents.


Leadership and the New Science

Leadership and the New Science

Author: Margaret J. Wheatley

Publisher: ReadHowYouWant.com

Published: 2010-06-21

Total Pages: 346

ISBN-13: 145877760X

DOWNLOAD EBOOK

A bestseller--more than 300,000 copies sold, translated into seventeen languages, and featured in the Los Angeles Times, Washington Post, Miami Herald, Harvard Business Review, Fast Company, and Fortune; Shows how discoveries in quantum physics, biology, and chaos theory enable us to deal successfully with change and uncertainty in our organizations and our lives; Includes a new chapter on how the new sciences can help us understand and cope with some of the major social challenges of our timesWe live in a time of chaos, rich in potential for new possibilities. A new world is being born. We need new ideas, new ways of seeing, and new relationships to help us now. New science--the new discoveries in biology, chaos theory, and quantum physics that are changing our understanding of how the world works--offers this guidance. It describes a world where chaos is natural, where order exists ''for free.'' It displays the intricate webs of cooperation that connect us. It assures us that life seeks order, but uses messes to get there.Leadership and the New Science is the bestselling, most acclaimed, and most influential guide to applying the new science to organizations and management. In it, Wheatley describes how the new science radically alters our understanding of the world, and how it can teach us to live and work well together in these chaotic times. It will teach you how to move with greater certainty and easier grace into the new forms of organizations and communities that are taking shape.