River Confluences and the Fluvial Network brings together state of the art thinking on confluence dynamics tributary impacts and the links between processes at these scales and river network functions. The book is unique in focus, content, scope and in bringing together engineering, ecological and geomorphological approaches to the three key areas of river system science. Taking a global approach this multi-authored text features a team of carefully selected, internationally renowned, experts who have all contributed significantly to recent ground breaking advancements in the field. Each chapter includes a comprehensive review of work to date highlighting recent discoveries and the main thrust of knowledge, previously unpublished research and case studies, challenges and questions, detailed references as well as a forward looking assessment of the state of the science.
Rivers are the great shapers of terrestrial landscapes. Very few points on Earth above sea level do not lie within a drainage basin. Even points distant from the nearest channel are likely to be influenced by that channel. Tectonic uplift raises rock thousands of meters above sea level. Precipitation falling on the uplifted terrain concentrates into channels that carry sediment downward to the oceans and influence the steepness of adjacent hill slopes by governing the rate at which the landscape incises. Rivers migrate laterally across lowlands, creating a complex topography of terraces, floodplain wetlands and channels. Subtle differences in elevation, grain size, and soil moisture across this topography control the movement of ground water and the distribution of plants and animals. Rivers in the Landscape, Second Edition, emphasizes general principles and conceptual models, as well as concrete examples of each topic drawn from the extensive literature on river process and form. The book is suitable for use as a course text or a general reference on rivers. Aimed at advanced undergraduate students, graduate students, and professionals looking for a concise summary of physical aspects of rivers, Rivers in the Landscape is designed to: emphasize the connectivity between rivers and the greater landscape by explicitly considering the interactions between rivers and tectonics, climate, biota, and human activities; provide a concise summary of the current state of knowledge for physical process and form in rivers; reflect the diversity of river environments, from mountainous, headwater channels to large, lowland, floodplain rivers and from the arctic to the tropics; reflect the diverse methods that scientists use to characterize and understand river process and form, including remote sensing, field measurements, physical experiments, and numerical simulations; reflect the increasing emphasis on quantification in fluvial geomorphology and the study of Earth surfaces in general; provide both an introduction to the classic, foundational papers on each topic, and a guide to the latest, particularly insightful and integrative references.
In Following the Proper Channels: Tributaries in the Mekong Legal Regime, Bennett Bearden offers in-depth policy and legal analyses of the marginalization of tributaries in the context of the 1995 Agreement on the Cooperation for the Sustainable Development of the Mekong River Basin, law of international watercourses, hydrosovereignty, and the national economic development interests of the Mekong riparians. As a problem-based study, enlightening conclusions are made based on the increasingly state-centric nature of water resources management in the Mekong region through pursuit of national agendas in the unilateral and bilateral development of tributaries. The overarching legal and hydropolicy issue is whether states can simultaneously pursue hydrosovereignty on tributaries and ensure the Mekong legal regime’s efficacy to achieve holistic water resources management and basin-wide governance.
Most of the thirty-four papers contained in this Special Publication arise from the Fourth International Conference on Fluvial Sedimentology held in Spain in 1989. Sections deal with various aspects of sediment transport and hydraulics in flume experiments and modern rivers, the analysis of alluvial facies, geomorphic and structural controls on alluvial sedimentation, alluvial stratigraphy and basin analysis, and finally the exploration and exploitation of ores. A professional reference to the most recent research in fluvial sedimentology. An international expert authorship.
This proceedings volume contains selected papers presented at the 2014 International Conference on Informatics, Networking and Intelligent Computing, held in Shenzhen, China. Contributions cover the latest developments and advances in the field of Informatics, Networking and Intelligent Computing.
Understanding and being able to predict fluvial processes is one of the biggest challenges for hydraulics and environmental engineers, hydrologists and other scientists interested in preserving and restoring the diverse functions of rivers. The interactions among flow, turbulence, vegetation, macroinvertebrates and other organisms, as well as the transport and retention of particulate matter, have important consequences on the ecological health of rivers. Managing rivers in an ecologically friendly way is a major component of sustainable engineering design, maintenance and restoration of ecological habitats. To address these challenges, a major focus of River Flow 2016 was to highlight the latest advances in experimental, computational and theoretical approaches that can be used to deepen our understanding and capacity to predict flow and the associated fluid-driven ecological processes, anthropogenic influences, sediment transport and morphodynamic processes. River Flow 2016 was organized under the auspices of the Committee for Fluvial Hydraulics of the International Association for Hydro-Environment Engineering and Research (IAHR). Since its first edition in 2002, the River Flow conference series has become the main international event focusing on river hydrodynamics, sediment transport, river engineering and restoration. Some of the highlights of the 8th International Conference on Fluvial Hydraulics were to focus on inter-disciplinary research involving, among others, ecological and biological aspects relevant to river flows and processes and to emphasize broader themes dealing with river sustainability. River Flow 2016 contains the contributions presented during the regular sessions covering the main conference themes and the special sessions focusing on specific hot topics of river flow research, and will be of interest to academics interested in hydraulics, hydrology and environmental engineering.
Following years of research, the first bored tunnel in soft soil in the Netherlands, the Tweede Heinenoord tunnel, was completed in 1998. Since then, Dutch engineers have increased their knowledge of soft soil tunnelling, with a significant and important part of this research being carried out by GeoDelft, the Dutch National Institute of Geo-Engineering. This book contains the most important publications by GeoDelft on the subject of soft soil tunnelling, focusing on the period from 1992 to the present, it is divided into four main headings: field measurements; grout behaviour; model testing; and numerical analysis. This impressive overview of the progress made in the Netherlands in soft soil tunnelling research over more than a decade is a valuable resource to those working in soft soil tunnelling worldwide.
The proceedings of the 4th Symposium on River, Coastal and Estuarine Morphodynamics offers the latest research results concerning quantitative modelling of the interaction of water and sediment and the shapes this interaction makes in rivers, watersheds, estuaries, the coast, the continental shelf and the deep sea. Morphodynamics is the study of the evolution of landscape and seascape features, from small scale to large.