Major Applications of Carbon Nanotube Field-Effect Transistors (CNTFET)

Major Applications of Carbon Nanotube Field-Effect Transistors (CNTFET)

Author: Raj, Balwinder

Publisher: IGI Global

Published: 2019-12-06

Total Pages: 255

ISBN-13: 1799813959

DOWNLOAD EBOOK

With recent advancements in electronics, specifically nanoscale devices, new technologies are being implemented to improve the properties of automated systems. However, conventional materials are failing due to limited mobility, high leakage currents, and power dissipation. To mitigate these challenges, alternative resources are required to advance electronics further into the nanoscale domain. Carbon nanotube field-effect transistors are a potential solution yet lack the information and research to be properly utilized. Major Applications of Carbon Nanotube Field-Effect Transistors (CNTFET) is a collection of innovative research on the methods and applications of converting semiconductor devices from micron technology to nanotechnology. The book provides readers with an updated status on existing CNTs, CNTFETs, and their applications and examines practical applications to minimize short channel effects and power dissipation in nanoscale devices and circuits. While highlighting topics including interconnects, digital circuits, and single-wall CNTs, this book is ideally designed for electrical engineers, electronics engineers, students, researchers, academicians, industry professionals, and practitioners working in nanoscience, nanotechnology, applied physics, and electrical and electronics engineering.


Carbon Nanotube Field Effect Transistor

Carbon Nanotube Field Effect Transistor

Author: Fouad Sabry

Publisher: One Billion Knowledgeable

Published: 2022-07-10

Total Pages: 500

ISBN-13:

DOWNLOAD EBOOK

What Is Carbon Nanotube Field Effect Transistor A carbon nanotube field-effect transistor, also known as a CNTFET, is a kind of field-effect transistor that makes use of a single carbon nanotube or an array of carbon nanotubes as the channel material in place of bulk silicon, as is done in the conventional MOSFET construction. Since they were first exhibited in 1998, there have been significant advancements in CNTFET technology. How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Carbon nanotube field-effect transistor Chapter 2: Carbon nanotube Chapter 3: JFET Chapter 4: Schottky barrier Chapter 5: Electron mobility Chapter 6: Nanoelectromechanical systems Chapter 7: Threshold voltage Chapter 8: Organic field-effect transistor Chapter 9: Ballistic conduction Chapter 10: Hybrid solar cell Chapter 11: Potential applications of carbon nanotubes Chapter 12: Carbon nanotubes in photovoltaics Chapter 13: Optical properties of carbon nanotubes Chapter 14: Carbon nanotube nanomotor Chapter 15: NanoIntegris Chapter 16: Ballistic conduction in single-walled carbon nanotubes Chapter 17: Tunnel field-effect transistor Chapter 18: Field-effect transistor Chapter 19: Carbon nanotubes in interconnects Chapter 20: Synthesis of carbon nanotubes Chapter 21: Vertically aligned carbon nanotube arrays (II) Answering the public top questions about carbon nanotube field effect transistor. (III) Real world examples for the usage of carbon nanotube field effect transistor in many fields. (IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of carbon nanotube field effect transistor' technologies. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of carbon nanotube field effect transistor.


Carbon Nanotube Electronics

Carbon Nanotube Electronics

Author: Ali Javey

Publisher: Springer Science & Business Media

Published: 2009-04-21

Total Pages: 275

ISBN-13: 0387692851

DOWNLOAD EBOOK

This book provides a complete overview of the field of carbon nanotube electronics. It covers materials and physical properties, synthesis and fabrication processes, devices and circuits, modeling, and finally novel applications of nanotube-based electronics. The book introduces fundamental device physics and circuit concepts of 1-D electronics. At the same time it provides specific examples of the state-of-the-art nanotube devices.


Graphene and Carbon Nanotube Field Effect Transistors

Graphene and Carbon Nanotube Field Effect Transistors

Author: Thomas H. Caine

Publisher:

Published: 2012

Total Pages: 0

ISBN-13: 9781613242766

DOWNLOAD EBOOK

This book describes initial efforts, as part of the new Strategic Technology Institute (STI) on carbon electronics, to model and simulate the performance of graphene field-effect transistors (FETs) using macroscopic descriptions that are classical for semiconductor devices. It is argued that the underlying physics that differentiates these devices from their normal semiconductor-based counterparts is most clearly revealed by non-computer-intensive descriptions that allow the designer to compare their behaviour with that of their well-studied semiconductor counterparts. Because it admits a reasonable description of both the lateral and vertical field and transport functionality of the FET structure, the gradual-channel approximation is key to this approach.


Science of Fullerenes and Carbon Nanotubes

Science of Fullerenes and Carbon Nanotubes

Author: M. S. Dresselhaus

Publisher: Elsevier

Published: 1996-03-20

Total Pages: 985

ISBN-13: 0080540775

DOWNLOAD EBOOK

The discovery of fullerenes (also known as buckyballs) has generated tremendous excitement and opened up a new field of carbon chemistry. As the first book available on this topic, this volume will be a landmark reference in the field. Because buckyballs are essentially closed hollow cages made up of carbon atoms, they can be manipulated in a variety of ways to yield never-before-seen materials. The balls can, for instance, be doped with atoms or pulled out into tubules and filled with lead to provide properties of high-temperature superconductivity. Researchers can now create their own buckyballs in a process that is almost as simple as making soot, making this research as inexpensive as it is exotic (which has doubtless contributed to its popularity). Researchers anticipate that fullerenes will offer boundless opportunities in the development of new products, drugs and materials. Science of Fullerenes and Carbon Nanotubes introduces materials scientists, chemists, and solid state physicists to the field of fullerenes, and discusses the unique properties and applications. both current and future, of all classes of fullerenes. Key Features * First comprehensive resource on fullerenes and their applications * Provides an introduction to the topic * Presents an extensive discussion of current and future applications of Fullerenes * Covers all classes of fullerenes


Carbon Nanotube and Graphene Device Physics

Carbon Nanotube and Graphene Device Physics

Author: H.-S. Philip Wong

Publisher: Cambridge University Press

Published: 2011

Total Pages: 263

ISBN-13: 0521519055

DOWNLOAD EBOOK

The first introductory textbook to explain the properties and performance of practical nanotube devices and related applications.


Study of Carbon NanoTube Field Effect Transistors for NEMS.

Study of Carbon NanoTube Field Effect Transistors for NEMS.

Author: Hasina F. Huq

Publisher:

Published: 2010

Total Pages:

ISBN-13: 9789533070544

DOWNLOAD EBOOK

The development and the dimensions of carbon nanotubes make the transistor a challenge to develop and to control the aspects of it, such as threshold voltage, maximum drain current, maximum transconductance. The investigated characteristics of CNTFETs represent its viability into transistor applications for NEMS switches, memory cells, field emission displays, biomedical instruments etc (Singh, 2005). Even with pessimistic assumptions,


Advanced Nanoelectronics

Advanced Nanoelectronics

Author: Muhammad Mustafa Hussain

Publisher: John Wiley & Sons

Published: 2019-01-04

Total Pages: 284

ISBN-13: 352734358X

DOWNLOAD EBOOK

Brings novel insights to a vibrant research area with high application potential?covering materials, physics, architecture, and integration aspects of future generation CMOS electronics technology Over the last four decades we have seen tremendous growth in semiconductor electronics. This growth has been fueled by the matured complementary metal oxide semiconductor (CMOS) technology. This comprehensive book captures the novel device options in CMOS technology that can be realized using non-silicon semiconductors. It discusses germanium, III-V materials, carbon nanotubes and graphene as semiconducting materials for three-dimensional field-effect transistors. It also covers non-conventional materials such as nanowires and nanotubes. Additionally, nanoelectromechanical switches-based mechanical relays and wide bandgap semiconductor-based terahertz electronics are reviewed as essential add-on electronics for enhanced communication and computational capabilities. Advanced Nanoelectronics: Post-Silicon Materials and Devices begins with a discussion of the future of CMOS. It continues with comprehensive chapter coverage of: nanowire field effect transistors; two-dimensional materials for electronic applications; the challenges and breakthroughs of the integration of germanium into modern CMOS; carbon nanotube logic technology; tunnel field effect transistors; energy efficient computing with negative capacitance; spin-based devices for logic, memory and non-Boolean architectures; and terahertz properties and applications of GaN. -Puts forward novel approaches for future, state-of-the-art, nanoelectronic devices -Discusses emerging materials and architectures such as alternate channel material like germanium, gallium nitride, 1D nanowires/tubes, 2D graphene, and other dichalcogenide materials and ferroelectrics -Examines new physics such as spintronics, negative capacitance, quantum computing, and 3D-IC technology -Brings together the latest developments in the field for easy reference -Enables academic and R&D researchers in semiconductors to "think outside the box" and explore beyond silica An important resource for future generation CMOS electronics technology, Advanced Nanoelectronics: Post-Silicon Materials and Devices will appeal to materials scientists, semiconductor physicists, semiconductor industry, and electrical engineers.


Carbon-Based Electronics

Carbon-Based Electronics

Author: Ashok Srivastava

Publisher: CRC Press

Published: 2015-03-19

Total Pages: 153

ISBN-13: 9814613118

DOWNLOAD EBOOK

Discovery of one-dimensional material carbon nanotubes in 1991 by the Japanese physicist Dr. Sumio Iijima has resulted in voluminous research in the field of carbon nanotubes for numerous applications, including possible replacement of silicon used in the fabrication of CMOS chips. One interesting feature of carbon nanotubes is that these can be me


Doping of Carbon Nanotubes

Doping of Carbon Nanotubes

Author: Sergey Bulyarskiy

Publisher: Springer

Published: 2017-07-01

Total Pages: 197

ISBN-13: 3319558838

DOWNLOAD EBOOK

This book addresses the control of electronic properties of carbon nanotubes. It presents thermodynamic calculations of the formation of impurities and defects in the interaction of nanotubes with hydrogen, oxygen, nitrogen and boron, based on theoretical models of the formation of defects in carbon nanotubes. It is shown that doping and adsorption lead to changes in the electronic structure of the tubes as well as to the appearance of impurity states in the HOMO-LUMO gap. The book presents examples of specific calculations for doping of carbon nanotubes with oxygen, hydrogen, nitrogen and boron, together with numerous experimental results and a comparison with the author’s thermodynamic calculations. Possible directions of the technological processes of optimization are pointed out, as well as the perspectives of p-n-transition creation with the help of carbon nanotube arrays. The results presented were derived from the physics of the processes and a theoretical model of the technological processes. Though a wealth of empirical information on doping nanotubes has been accumulated in the scientific literature, what is lacking is a theoretical model for their analysis. As such, the book develops a thermodynamic model of the self-organization of structural elements in multicomponent systems – including carbon nanotubes, clusters and precipitates in condensed matter – and subsequently adapts it to the doping of carbon nanotubes. This approach allows readers to gain a far deeper understanding of the processes of doping carbon nanotubes.