Canonical Gibbs Measures
Author: H. O. Georgii
Publisher: Springer
Published: 2006-11-15
Total Pages: 198
ISBN-13: 3540384847
DOWNLOAD EBOOKRead and Download eBook Full
Author: H. O. Georgii
Publisher: Springer
Published: 2006-11-15
Total Pages: 198
ISBN-13: 3540384847
DOWNLOAD EBOOKAuthor: Hans-Otto Georgii
Publisher: Walter de Gruyter
Published: 2011-05-31
Total Pages: 561
ISBN-13: 3110250322
DOWNLOAD EBOOK"This book is much more than an introduction to the subject of its title. It covers in depth a broad range of topics in the mathematical theory of phase transition in statistical mechanics and as an up to date reference in its chosen topics it is a work of outstanding scholarship. It is in fact one of the author's stated aims that this comprehensive monograph should serve both as an introductory text and as a reference for the expert. In its latter function it informs the reader about the state of the art in several directions. It is introductory in the sense that it does not assume any prior knowledge of statistical mechanics and is accessible to a general readership of mathematicians with a basic knowledge of measure theory and probability. As such it should contribute considerably to the further growth of the already lively interest in statistical mechanics on the part of probabilists and other mathematicians." Fredos Papangelou, Zentralblatt MATH The second edition has been extended by a new section on large deviations and some comments on the more recent developments in the area.
Author: Sacha Friedli
Publisher: Cambridge University Press
Published: 2017-11-23
Total Pages: 643
ISBN-13: 1107184827
DOWNLOAD EBOOKA self-contained, mathematical introduction to the driving ideas in equilibrium statistical mechanics, studying important models in detail.
Author: Barry Simon
Publisher: Princeton University Press
Published: 2014-07-14
Total Pages: 534
ISBN-13: 1400863430
DOWNLOAD EBOOKA state-of-the-art survey of both classical and quantum lattice gas models, this two-volume work will cover the rigorous mathematical studies of such models as the Ising and Heisenberg, an area in which scientists have made enormous strides during the past twenty-five years. This first volume addresses, among many topics, the mathematical background on convexity and Choquet theory, and presents an exhaustive study of the pressure including the Onsager solution of the two-dimensional Ising model, a study of the general theory of states in classical and quantum spin systems, and a study of high and low temperature expansions. The second volume will deal with the Peierls construction, infrared bounds, Lee-Yang theorems, and correlation inequality. This comprehensive work will be a useful reference not only to scientists working in mathematical statistical mechanics but also to those in related disciplines such as probability theory, chemical physics, and quantum field theory. It can also serve as a textbook for advanced graduate students. Originally published in 1993. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Author: Utkir A Rozikov
Publisher: World Scientific
Published: 2022-07-28
Total Pages: 367
ISBN-13: 9811251258
DOWNLOAD EBOOKThis book presents recently obtained mathematical results on Gibbs measures of the q-state Potts model on the integer lattice and on Cayley trees. It also illustrates many applications of the Potts model to real-world situations in biology, physics, financial engineering, medicine, and sociology, as well as in some examples of alloy behavior, cell sorting, flocking birds, flowing foams, and image segmentation.Gibbs measure is one of the important measures in various problems of probability theory and statistical mechanics. It is a measure associated with the Hamiltonian of a biological or physical system. Each Gibbs measure gives a state of the system.The main problem for a given Hamiltonian on a countable lattice is to describe all of its possible Gibbs measures. The existence of some values of parameters at which the uniqueness of Gibbs measure switches to non-uniqueness is interpreted as a phase transition.This book informs the reader about what has been (mathematically) done in the theory of Gibbs measures of the Potts model and the numerous applications of the Potts model. The main aim is to facilitate the readers (in mathematical biology, statistical physics, applied mathematics, probability and measure theory) to progress into an in-depth understanding by giving a systematic review of the theory of Gibbs measures of the Potts model and its applications.
Author: James Sethna
Publisher: OUP Oxford
Published: 2006-04-07
Total Pages: 374
ISBN-13: 0191566217
DOWNLOAD EBOOKIn each generation, scientists must redefine their fields: abstracting, simplifying and distilling the previous standard topics to make room for new advances and methods. Sethna's book takes this step for statistical mechanics - a field rooted in physics and chemistry whose ideas and methods are now central to information theory, complexity, and modern biology. Aimed at advanced undergraduates and early graduate students in all of these fields, Sethna limits his main presentation to the topics that future mathematicians and biologists, as well as physicists and chemists, will find fascinating and central to their work. The amazing breadth of the field is reflected in the author's large supply of carefully crafted exercises, each an introduction to a whole field of study: everything from chaos through information theory to life at the end of the universe.
Author: Marco Pettini
Publisher: Springer Science & Business Media
Published: 2007-06-14
Total Pages: 460
ISBN-13: 0387499571
DOWNLOAD EBOOKThis book covers a new explanation of the origin of Hamiltonian chaos and its quantitative characterization. The author focuses on two main areas: Riemannian formulation of Hamiltonian dynamics, providing an original viewpoint about the relationship between geodesic instability and curvature properties of the mechanical manifolds; and a topological theory of thermodynamic phase transitions, relating topology changes of microscopic configuration space with the generation of singularities of thermodynamic observables. The book contains numerous illustrations throughout and it will interest both mathematicians and physicists.
Author: Guido Del Pino
Publisher: Springer
Published: 2006-11-14
Total Pages: 496
ISBN-13: 3540470921
DOWNLOAD EBOOKWith contributions by numerous experts
Author: Tadahisa Funaki
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 319
ISBN-13: 1461384680
DOWNLOAD EBOOKThis IMA Volume in Mathematics and its Applications NONLINEAR STOCHASTIC PDEs: HYDRODYNAMIC LIMIT AND BURGERS' TURBULENCE is based on the proceedings of the period of concentration on Stochas tic Methods for Nonlinear PDEs which was an integral part of the 1993- 94 IMA program on "Emerging Applications of Probability." We thank Tadahisa Funaki and Wojbor A. Woyczynski for organizing this meeting and for editing the proceedings. We also take this opportunity to thank the National Science Foundation and the Army Research Office, whose financial support made this workshop possible. A vner Friedman Willard Miller, Jr. xiii PREFACE A workshop on Nonlinear Stochastic Partial Differential Equations was held during the week of March 21 at the Institute for Mathematics and Its Applications at the University of Minnesota. It was part of the Special Year on Emerging Applications of Probability program put together by an organizing committee chaired by J. Michael Steele. The selection of topics reflected personal interests of the organizers with two areas of emphasis: the hydrodynamic limit problems and Burgers' turbulence and related models. The talks and the papers appearing in this volume reflect a number of research directions that are currently pursued in these areas.
Author: Harry Kesten
Publisher: Springer Science & Business Media
Published: 2013-03-14
Total Pages: 358
ISBN-13: 3662094444
DOWNLOAD EBOOKMost probability problems involve random variables indexed by space and/or time. These problems almost always have a version in which space and/or time are taken to be discrete. This volume deals with areas in which the discrete version is more natural than the continuous one, perhaps even the only one than can be formulated without complicated constructions and machinery. The 5 papers of this volume discuss problems in which there has been significant progress in the last few years; they are motivated by, or have been developed in parallel with, statistical physics. They include questions about asymptotic shape for stochastic growth models and for random clusters; existence, location and properties of phase transitions; speed of convergence to equilibrium in Markov chains, and in particular for Markov chains based on models with a phase transition; cut-off phenomena for random walks. The articles can be read independently of each other. Their unifying theme is that of models built on discrete spaces or graphs. Such models are often easy to formulate. Correspondingly, the book requires comparatively little previous knowledge of the machinery of probability.