Design of Highway Bridges

Design of Highway Bridges

Author: Richard M. Barker

Publisher: John Wiley & Sons

Published: 2013-02-04

Total Pages: 1194

ISBN-13: 1118330102

DOWNLOAD EBOOK

Up-to-date coverage of bridge design and analysis revised to reflect the fifth edition of the AASHTO LRFD specifications Design of Highway Bridges, Third Edition offers detailed coverage of engineering basics for the design of short- and medium-span bridges. Revised to conform with the latest fifth edition of the American Association of State Highway and Transportation Officials (AASHTO) LRFD Bridge Design Specifications, it is an excellent engineering resource for both professionals and students. This updated edition has been reorganized throughout, spreading the material into twenty shorter, more focused chapters that make information even easier to find and navigate. It also features: Expanded coverage of computer modeling, calibration of service limit states, rigid method system analysis, and concrete shear Information on key bridge types, selection principles, and aesthetic issues Dozens of worked problems that allow techniques to be applied to real-world problems and design specifications A new color insert of bridge photographs, including examples of historical and aesthetic significance New coverage of the "green" aspects of recycled steel Selected references for further study From gaining a quick familiarity with the AASHTO LRFD specifications to seeking broader guidance on highway bridge design Design of Highway Bridges is the one-stop, ready reference that puts information at your fingertips, while also serving as an excellent study guide and reference for the U.S. Professional Engineering Examination.


A Comparison of AASHTO Bridge Load Rating Methods

A Comparison of AASHTO Bridge Load Rating Methods

Author: Mark Mlynarski

Publisher: Transportation Research Board

Published: 2011

Total Pages: 104

ISBN-13: 0309213444

DOWNLOAD EBOOK

TRB’s National Cooperative Highway Research Program (NCHRP) Report 700: A Comparison of AASHTO Bridge Load Rating Methods documents an analysis of 1,500 bridges that represent various material types and configurations using AASHTOWareTM Virtis® to compare the load factor rating to load and resistance factor rating for both moment and shear induced by design vehicles, American Association of State Highway and Transportation Officials (AASHTO) legal loads, and eight additional permit/legal vehicles.


Reference Guide for Applying Risk and Reliability-Based Approaches for Bridge Scour Prediction

Reference Guide for Applying Risk and Reliability-Based Approaches for Bridge Scour Prediction

Author: Peter Frederick Lagasse

Publisher: Transportation Research Board

Published: 2013

Total Pages: 175

ISBN-13: 0309283566

DOWNLOAD EBOOK

"TRB's National Cooperative Highway Research Program (NCHRP) Report 761: Reference Guide for Applying Risk and Reliability-Based Approaches for Bridge Scour Prediction presents a reference guide designed to help identify and evaluate the uncertainties associated with bridge scour prediction including hydrologic, hydraulic, and model/equation uncertainty. For complex foundation systems and channel conditions, the report includes a step-by-step procedure designed to provide scour factors for site-specific conditions."--Publisher's description.


Calibration of Deterministic Parameters: Reassessment of Offshore Platforms in the Arabian Gulf

Calibration of Deterministic Parameters: Reassessment of Offshore Platforms in the Arabian Gulf

Author: Hassan Zaghloul

Publisher: Universal-Publishers

Published: 2011-04-18

Total Pages: 592

ISBN-13: 1599423979

DOWNLOAD EBOOK

The Arabian Gulf oil and gas production reserves have made it one of the world's strategic producers since the early 1960s, with many of the existing platforms stretched beyond their original design life. Advances in drilling technology and reservoir assessments have extended the requirement for the service life of those existing platforms even further. Extension of the life span of an existing platform requires satisfactory reassessment of its various structural components, including piled foundations. The American Petroleum Institute Recommended Practice 2A (API RP2A) is commonly used in the Arabian Gulf for reassessment of existing platforms. The API guidelines have been developed for conditions in the Gulf of Mexico, the waters off Alaska and the Pacific and Atlantic seaboards of the USA. However, the Arabian Gulf conditions are fundamentally different to those encountered in US waters. Hence, there is a need to develop guidelines for reassessment of existing offshore structures to account for the specific conditions of the Arabian Gulf. This thesis performs statistical analyses on databases collected during this research from existing platforms to calibrate relevant load and resistance factors for the required guidelines. The developed guidelines are based on established approaches used in developing international codes and standards such as API RP2A-LRFD. The outcome of this research revolves around the following three main issues: 1. Calibration of resistance factors for axial capacity of piles driven in the carbonate soils 2. Development of open area live loads (OALL) on offshore platforms 3. Effect of extreme storm conditions on the reliability of existing platforms in the Arabian Gulf The outcomes of this research are expected to have a profound influence onreassessment of existing platforms in the Arabian Gulf.


Highway Bridge Superstructure Engineering

Highway Bridge Superstructure Engineering

Author: Narendra Taly

Publisher: CRC Press

Published: 2014-11-21

Total Pages: 966

ISBN-13: 1466552182

DOWNLOAD EBOOK

A How-To Guide for Bridge Engineers and Designers Highway Bridge Superstructure Engineering: LRFD Approaches to Design and Analysis provides a detailed discussion of traditional structural design perspectives, and serves as a state-of-the-art resource on the latest design and analysis of highway bridge superstructures. This book is applicable to highway bridges of all construction and material types, and is based on the load and resistance factor design (LRFD) philosophy. It discusses the theory of probability (with an explanation leading to the calibration process and reliability), and includes fully solved design examples of steel, reinforced and prestressed concrete bridge superstructures. It also contains step-by-step calculations for determining the distribution factors for several different types of bridge superstructures (which form the basis of load and resistance design specifications) and can be found in the AASHTO LRFD Bridge Design Specifications. Fully Realize the Basis and Significance of LRFD Specifications Divided into six chapters, this instructive text: Introduces bridge engineering as a discipline of structural design Describes numerous types of highway bridge superstructures systems Presents a detailed discussion of various types of loads that act on bridge superstructures and substructures Discusses the methods of analyses of highway bridge superstructures Includes a detailed discussion of reinforced and prestressed concrete bridges, and slab-steel girder bridges Highway Bridge Superstructure Engineering: LRFD Approaches to Design and Analysis can be used for teaching highway bridge design courses to undergraduate- and graduate-level classes, and as an excellent resource for practicing engineers.