A Treatise on the Calculus of Finite Differences
Author: George Boole
Publisher:
Published: 1880
Total Pages: 414
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: George Boole
Publisher:
Published: 1880
Total Pages: 414
ISBN-13:
DOWNLOAD EBOOKAuthor: Louis Melville Milne-Thomson
Publisher:
Published: 1960
Total Pages: 592
ISBN-13:
DOWNLOAD EBOOKAuthor: Harvard Lomax
Publisher:
Published: 1967
Total Pages: 124
ISBN-13:
DOWNLOAD EBOOKOne purpose of this report is to present a mathematical procedure which can be used to study and compare various numerical methods for integrating ordinary differential equations. This procedure is relatively simple, mathematically rigorous, and of such a nature that matters of interest in digital computations, such as machine memory and running time, can be weighed against the accuracy and stability provided by the method under consideration. Briefly, the procedure is as follows: (1) Find a single differential equation that is sufficiently representative (this is fully defined in the report) of an arbitrary number of nonhomogeneous, linear, ordinary differential equations with constant coefficients. (2) Solve this differential equation exactly. (3) Choose any given numerical method, use it -- in its entirety -- to reduce the differential equation to difference equations, and, by means of operational techniques, solve the latter exactly. (4) Study and compare the results of (2) and (3). Conceptually there is nothing new in this procedure, but the particular development presented in this report does not appear to have been carried out before. Another purpose is to use the procedure just described to analyze a variety of numerical methods, ranging from classical, predictor-corrector systems to Runge-Kutta techniques and including various combinations of the two.
Author: Hans Petter Langtangen
Publisher: Springer
Published: 2016-06-10
Total Pages: 210
ISBN-13: 3319294393
DOWNLOAD EBOOKThis text provides a very simple, initial introduction to the complete scientific computing pipeline: models, discretization, algorithms, programming, verification, and visualization. The pedagogical strategy is to use one case study – an ordinary differential equation describing exponential decay processes – to illustrate fundamental concepts in mathematics and computer science. The book is easy to read and only requires a command of one-variable calculus and some very basic knowledge about computer programming. Contrary to similar texts on numerical methods and programming, this text has a much stronger focus on implementation and teaches testing and software engineering in particular.
Author: Ronald E. Mickens
Publisher: World Scientific
Published: 1994
Total Pages: 264
ISBN-13: 9810214588
DOWNLOAD EBOOKThis book provides a clear summary of the work of the author on the construction of nonstandard finite difference schemes for the numerical integration of differential equations. The major thrust of the book is to show that discrete models of differential equations exist such that the elementary types of numerical instabilities do not occur. A consequence of this result is that in general bigger step-sizes can often be used in actual calculations and/or finite difference schemes can be constructed that are conditionally stable in many instances whereas in using standard techniques no such schemes exist. The theoretical basis of this work is centered on the concepts of ?exact? and ?best? finite difference schemes. In addition, a set of rules is given for the discrete modeling of derivatives and nonlinear expressions that occur in differential equations. These rules often lead to a unique nonstandard finite difference model for a given differential equation.
Author: Ronald E Mickens
Publisher: World Scientific
Published: 2020-11-11
Total Pages: 332
ISBN-13: 981122255X
DOWNLOAD EBOOKThis second edition of Nonstandard Finite Difference Models of Differential Equations provides an update on the progress made in both the theory and application of the NSFD methodology during the past two and a half decades. In addition to discussing details related to the determination of the denominator functions and the nonlocal discrete representations of functions of dependent variables, we include many examples illustrating just how this should be done.Of real value to the reader is the inclusion of a chapter listing many exact difference schemes, and a chapter giving NSFD schemes from the research literature. The book emphasizes the critical roles played by the 'principle of dynamic consistency' and the use of sub-equations for the construction of valid NSFD discretizations of differential equations.
Author: London Mathematical Society
Publisher:
Published: 1892
Total Pages: 368
ISBN-13:
DOWNLOAD EBOOK"Papers presented to J. E. Littlewood on his 80th birthday" issued as 3d ser., v. 14 A, 1965.
Author: Hans Petter Langtangen
Publisher: Springer
Published: 2017-06-21
Total Pages: 522
ISBN-13: 3319554565
DOWNLOAD EBOOKThis book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.
Author: R Mickens
Publisher: CRC Press
Published: 1991-01-01
Total Pages: 470
ISBN-13: 9780442001360
DOWNLOAD EBOOKIn recent years, the study of difference equations has acquired a new significance, due in large part to their use in the formulation and analysis of discrete-time systems, the numerical integration of differential equations by finite-difference schemes, and the study of deterministic chaos. The second edition of Difference Equations: Theory and Applications provides a thorough listing of all major theorems along with proofs. The text treats the case of first-order difference equations in detail, using both analytical and geometrical methods. Both ordinary and partial difference equations are considered, along with a variety of special nonlinear forms for which exact solutions can be determined. Numerous worked examples and problems allow readers to fully understand the material in the text. They also give possible generalization of the theorems and application models. The text's expanded coverage of application helps readers appreciate the benefits of using difference equations in the modeling and analysis of "realistic" problems from a broad range of fields. The second edition presents, analyzes, and discusses a large number of applications from the mathematical, biological, physical, and social sciences. Discussions on perturbation methods and difference equation models of differential equation models of differential equations represent contributions by the author to the research literature. Reference to original literature show how the elementary models of the book can be extended to more realistic situations. Difference Equations, Second Edition gives readers a background in discrete mathematics that many workers in science-oriented industries need as part of their general scientific knowledge. With its minimal mathematical background requirements of general algebra and calculus, this unique volume will be used extensively by students and professional in science and technology, in areas such as applied mathematics, control theory, population science, economics, and electronic circuits, especially discrete signal processing.
Author: Ronald E. Mickens
Publisher: CRC Press
Published: 2022-02-17
Total Pages: 461
ISBN-13: 1000152898
DOWNLOAD EBOOKIn recent years, the study of difference equations has acquired a new significance, due in large part to their use in the formulation and analysis of discrete-time systems, the numerical integration of differential equations by finite-difference schemes, and the study of deterministic chaos. The second edition of Difference Equations: Theory and Applications provides a thorough listing of all major theorems along with proofs. The text treats the case of first-order difference equations in detail, using both analytical and geometrical methods. Both ordinary and partial difference equations are considered, along with a variety of special nonlinear forms for which exact solutions can be determined. Numerous worked examples and problems allow readers to fully understand the material in the text. They also give possible generalization of the theorems and application models. The text's expanded coverage of application helps readers appreciate the benefits of using difference equations in the modeling and analysis of "realistic" problems from a broad range of fields. The second edition presents, analyzes, and discusses a large number of applications from the mathematical, biological, physical, and social sciences. Discussions on perturbation methods and difference equation models of differential equation models of differential equations represent contributions by the author to the research literature. Reference to original literature show how the elementary models of the book can be extended to more realistic situations. Difference Equations, Second Edition gives readers a background in discrete mathematics that many workers in science-oriented industries need as part of their general scientific knowledge. With its minimal mathematical background requirements of general algebra and calculus, this unique volume will be used extensively by students and professional in science and technology, in areas such as applied mathematics, control theory, population science, economics, and electronic circuits, especially discrete signal processing.