Computer-aided design (CAD) and rapid prototyping (RP) are now a fundamental part of the professional practice of product design and are therefore essential skills for product design undergraduate students. This book provides students with all the tools needed to get to grips with the range of both CAD software and RP processes used in the industry. Presented in a visually engaging format, this book is packed with case study examples from contemporary product designers, as well as screen shots, CAD models and images of rapid prototypes highlighting the design process. This book shows how CAD and RP software is used in product design and explains, in clear language, the similarities and differences between the different software packages and processes.
Innovation in Product Design gives an overview of the research fields and achievements in the development of methods and tools for product design and innovation. It presents contributions from experts in many different fields covering a variety of research topics related to product development and innovation. Product lifecycle management, knowledge management, product customization, topological optimization, product virtualization, systematic innovation, virtual humans, design and engineering, and rapid prototyping are the key research areas described in the book. It also details successful case studies developed with industrial companies. Innovation in Product Design is written for academic researchers, graduate students and professionals in product development disciplines who are interested in understanding how novel methodologies and technologies can make the product development process more efficient.
"Engineering Design and Rapid Prototyping" offers insight into the methods and techniques that allow for easily implementing engineering designs by incorporating advanced methodologies and technologies. This book contains advanced topics such as feature-based design and process planning, modularity and rapid manufacturing, along with a collection of the latest methods and technologies currently being utilized in the field. The volume also: -Provides axiomatic design and solution methodologies for both design and manufacturing -Discusses product life cycle development and analysis for ease of manufacture and assembly -Offers applied methods and technologies in rapid prototyping, tooling and manufacturing "Engineering Design and Rapid Prototyping" will be extremely valuable for any engineers and researchers and students working in engineering design.
Now in its second edition, Prototyping and Modelmaking for Product Design, by practising product development consultant Bjarki Hallgrimsson, is essential reading for both students and design professionals. Prototyping and ModelMaking for Product Design goes behind the scenes to illustrates how prototypes are used to help designers understand problems better, explore more imaginative solutions, investigate human interaction more fully and test functionality so as to de-risk the design process. Following an introduction on the purpose of prototyping, specific materials, tools and techniques are examined in detail, with step-by-step tutorials and industry examples of real and successful products illustrating how prototypes are used to help solve design problems. Workflow is also discussed, using a mixture of hands-on and digital tools. This new edition includes case studies representing technological developments such as prototyping user experience and interactive electronic products, as well as a new expanded section on digital modelmaking tools, including 3D printing and laser cutting. The first chapters of the book explain why prototyping is so important to the design process. The many uses of prototyping will be shown in the context of several comprehensive projects by some of the world's leading design firms. The second part is an introduction to the typical materials used by designers in their prototyping efforts and how to work with them. In all cases, the approach is to use digital and manual tools in a complementary and effective fashion. Tutorials were specifically developed that underline the back and forth of digital and manual ways of working. The emphasis is on the kinds of construction that can be done by the designers themselves. Health and safety is stressed in terms of personal responsibility and awareness. Topics covered include:Definition of prototyping and modelmakingPrototyping as a form of problem solvingModelmakingPhysical and digital prototypesBuidling by hand and using digital technologies
This book introduces the role of Rapid Prototyping Techniques within the product development phase. It deals with the concept, origin, and working cycle of Rapid Prototyping Processes with emphasis on the applications. Apart from elaboration of engineering and non-engineering applications, it highlights recent applications like Bio-Medical Models for Surgical Planning, Molecular Models, Architectural Models, Sculptured Models, Psycho-Analysis Models. Special emphasis has been provided to the technique of generating human organs from live cells/tissues of the same human named 3D BIO PRINTERS. As the Rapid Prototyping Techniques are for tailor made products and not for mass manufacturing hence the book also elaborates on the mass manufacturing of rapid prototyped products. This includes casting and rapid tooling. The book concludes with Reverse Engineering and the role played by Rapid Prototyping Techniques towards the same. With globalization of market and advances in science and technology, the life span of products has shortened considerably. For early realization of products and short development period, engineers and researchers are constantly working together for more and more efficient and effective solutions. The most effective solution identified has been usage of computers in both designing and manufacturing. This gave birth to the nomenclatures CAD (Computer Aided Designing) and CAM (Computer aided Manufacturing). This was the initiation that ensured short product development and realization period. Researchers coined the concept as Rapid Prototyping. In contrast to Prototyping, Rapid prototyping is a group of techniques used to quickly fabricate a scale model of a physical part or assembly using three-dimensional computer aided design (CAD) data. Construction of the part or assembly is usually done using 3D printing or "additive or subtractive layer manufacturing" technology. The first methods for rapid prototyping became available in the late 1980s and were used to produce models and prototype parts. Today, they are used for a wide range of applications and are used to manufacture production-quality parts in relatively small numbers if desired without the typical unfavorable short-run economics. This economy has encouraged online service bureaus for early product realization or physical products for actual testing. This book is expected to contain Seven Chapters. Chapter 1 would explain product life cycle and the product development phase in the same, introducing role of Rapid Prototyping Techniques in Product development phase. Chapter 2 would deals with the concept, origin and working cycle of Rapid Prototyping Processes. Chapter 3 would concentrates on the applications of Rapid Prototyping Technology. Apart from elaboration of engineering and non-engineering applications, it also elaborates on recent applications like Bio-Medical Models for Surgical Planning, Molecular Models, Architectural Models, Sculptured Models, Psycho-Analysis Models etc. Chapter 4 would introduce the various Rapid Prototyping systems available worldwide. The chapter also introduces the technique of generating human organs from live cells/tissues of the same human named 3D BIO PRINTERS hence ensuring low rejection rate by human body. As the Rapid Prototyping Techniques are for tailor made products and not for mass manufacturing hence Chapter 5 would elaborates on the mass manufacturing of rapid prototyped products. This includes Casting and Rapid Tooling. Chapter 6 would deal with Reverse Engineering and the role played by Rapid Prototyping Techniques towards the same. As the product realization is primarily dependent on various softwares which are required to be understood for better accuracy so the concluding chapter of the book i.e. Chapter 7 would explain some software associated with the various techniques.
Since the dawn of civilization, mankind has been engaged in the conception and manufacture of discrete products to serve the functional needs of local customers and the tools (technology) needed by other craftsmen. In fact, much of the progress in civilization can be attributed to progress in discrete product manufacture. The functionality of a discrete object depends on two entities: form, and material composition. For instance, the aesthetic appearance of a sculpture depends upon its form whereas its durability depends upon the material composition. An ideal manufacturing process is one that is able to automatically generate any form (freeform) in any material. However, unfortunately, most traditional manufacturing processes are severely constrained on all these counts. There are three basic ways of creating form: conservative, subtractive, and additive. In the first approach, we take a material and apply the needed forces to deform it to the required shape, without either adding or removing material, i. e. , we conserve material. Many industrial processes such as forging, casting, sheet metal forming and extrusion emulate this approach. A problem with many of these approaches is that they focus on form generation without explicitly providing any means for controlling material composition. In fact, even form is not created directly. They merely duplicate the external form embedded in external tooling such as dies and molds and the internal form embedded in cores, etc. Till recently, we have had to resort to the 'subtractive' approach to create the form of the tooling.
Rapid Prototyping (RP) has revolutionized the landscape of how prototypes and products are made and small batch manufacturing carried out. This book gives a comprehensive coverage of RP and rapid tooling processes, data formats and applications. A CD-ROM, included in the book, presents RP and its principles in an interactive way to augment the learning experience.Special features:
Rapid prototyping technology has become a powerful tool for rapid product development in almost every branch of industry. Many new and upcoming processes offer means for the fast creation of models with steadily increasing accuracy, build speed, model properties, and economic advantages. This book encourages engineers to incorporate rapid prototyping in their daily routine. It illustrates the benefits that come with the use of models at any stage of the product development process and defines the different types of models. It covers the fundamentals of rapid prototyping and the special capabilities of prototypers. It shows how digital production based on low volume rapid prototyped samples can be realized.
e-Design: Computer-Aided Engineering Design, Revised First Edition is the first book to integrate a discussion of computer design tools throughout the design process. Through the use of this book, the reader will understand basic design principles and all-digital design paradigms, the CAD/CAE/CAM tools available for various design related tasks, how to put an integrated system together to conduct All-Digital Design (ADD), industrial practices in employing ADD, and tools for product development. - Comprehensive coverage of essential elements for understanding and practicing the e-Design paradigm in support of product design, including design method and process, and computer based tools and technology - Part I: Product Design Modeling discusses virtual mockup of the product created in the CAD environment, including not only solid modeling and assembly theories, but also the critical design parameterization that converts the product solid model into parametric representation, enabling the search for better design alternatives - Part II: Product Performance Evaluation focuses on applying CAE technologies and software tools to support evaluation of product performance, including structural analysis, fatigue and fracture, rigid body kinematics and dynamics, and failure probability prediction and reliability analysis - Part III: Product Manufacturing and Cost Estimating introduces CAM technology to support manufacturing simulations and process planning, sheet forming simulation, RP technology and computer numerical control (CNC) machining for fast product prototyping, as well as manufacturing cost estimate that can be incorporated into product cost calculations - Part IV: Design Theory and Methods discusses modern decision-making theory and the application of the theory to engineering design, introduces the mainstream design optimization methods for both single and multi-objectives problems through both batch and interactive design modes, and provides a brief discussion on sensitivity analysis, which is essential for designs using gradient-based approaches - Tutorial lessons and case studies are offered for readers to gain hands-on experiences in practicing e-Design paradigm using two suites of engineering software: Pro/ENGINEER-based, including Pro/MECHANICA Structure, Pro/ENGINEER Mechanism Design, and Pro/MFG; and SolidWorks-based, including SolidWorks Simulation, SolidWorks Motion, and CAMWorks. Available on the companion website http://booksite.elsevier.com/9780123820389
This updated, second edition provides readers with an expanded treatment of the FEM as well as new information on recent trends in rapid prototyping technology. The new edition features more descriptions, exercises, and questions within each chapter. In addition, more in-depth surface theory has been introduced in section four, with particular emphasis in surface theory. Promising cutting edge technologies in the area of rapid prototyping are introduced in section seven, MATLAB-based FEM analysis has been added in section eight, and development of the plan stress and plane strain stiffness equations are introduced as a new chapter. Revised and updated based on student feedback, Solid Modeling and Applications: Rapid Prototyping, CAD and CAE Theory is ideal for university students in various engineering disciplines as well as design engineers involved in product design, analysis, and validation. It equips them with an understanding of the theory and essentials and also with practical skills needed to apply this understanding in real world design and manufacturing settings.