C* - Algebras and Numerical Analysis

C* - Algebras and Numerical Analysis

Author: Ronald Hagen

Publisher: CRC Press

Published: 2000-09-07

Total Pages: 388

ISBN-13: 9780824704605

DOWNLOAD EBOOK

"Analyzes algebras of concrete approximation methods detailing prerequisites, local principles, and lifting theorems. Covers fractality and Fredholmness. Explains the phenomena of the asymptotic splitting of the singular values, and more."


Non-commutative Gelfand Theories

Non-commutative Gelfand Theories

Author: Steffen Roch

Publisher: Springer Science & Business Media

Published: 2010-11-19

Total Pages: 388

ISBN-13: 0857291831

DOWNLOAD EBOOK

Written as a hybrid between a research monograph and a textbook the first half of this book is concerned with basic concepts for the study of Banach algebras that, in a sense, are not too far from being commutative. Essentially, the algebra under consideration either has a sufficiently large center or is subject to a higher order commutator property (an algebra with a so-called polynomial identity or in short: Pl-algebra). In the second half of the book, a number of selected examples are used to demonstrate how this theory can be successfully applied to problems in operator theory and numerical analysis. Distinguished by the consequent use of local principles (non-commutative Gelfand theories), PI-algebras, Mellin techniques and limit operator techniques, each one of the applications presented in chapters 4, 5 and 6 forms a theory that is up to modern standards and interesting in its own right. Written in a way that can be worked through by the reader with fundamental knowledge of analysis, functional analysis and algebra, this book will be accessible to 4th year students of mathematics or physics whilst also being of interest to researchers in the areas of operator theory, numerical analysis, and the general theory of Banach algebras.


Computational Mathematics, Numerical Analysis and Applications

Computational Mathematics, Numerical Analysis and Applications

Author: Mariano Mateos

Publisher: Springer

Published: 2017-08-03

Total Pages: 259

ISBN-13: 331949631X

DOWNLOAD EBOOK

The first part of this volume gathers the lecture notes of the courses of the “XVII Escuela Hispano-Francesa”, held in Gijón, Spain, in June 2016. Each chapter is devoted to an advanced topic and presents state-of-the-art research in a didactic and self-contained way. Young researchers will find a complete guide to beginning advanced work in fields such as High Performance Computing, Numerical Linear Algebra, Optimal Control of Partial Differential Equations and Quantum Mechanics Simulation, while experts in these areas will find a comprehensive reference guide, including some previously unpublished results, and teachers may find these chapters useful as textbooks in graduate courses. The second part features the extended abstracts of selected research work presented by the students during the School. It highlights new results and applications in Computational Algebra, Fluid Mechanics, Chemical Kinetics and Biomedicine, among others, offering interested researchers a convenient reference guide to these latest advances.


An Introduction to K-Theory for C*-Algebras

An Introduction to K-Theory for C*-Algebras

Author: M. Rørdam

Publisher: Cambridge University Press

Published: 2000-07-20

Total Pages: 260

ISBN-13: 9780521789448

DOWNLOAD EBOOK

This book provides a very elementary introduction to K-theory for C*-algebras, and is ideal for beginning graduate students.


Numerical Analysis

Numerical Analysis

Author: Rainer Kress

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 340

ISBN-13: 1461205999

DOWNLOAD EBOOK

An introduction into numerical analysis for students in mathematics, physics, and engineering. Instead of attempting to exhaustively cover everything, the goal is to guide readers towards the basic ideas and general principles by way of the main and important numerical methods. The book includes the necessary basic functional analytic tools for the solid mathematical foundation of numerical analysis -- indispensable for any deeper study and understanding of numerical methods, in particular, for differential equations and integral equations. The text is presented in a concise and easily understandable fashion so as to be successfully mastered in a one-year course.


Mathematical Analysis and Numerical Methods for Science and Technology

Mathematical Analysis and Numerical Methods for Science and Technology

Author: Robert Dautray

Publisher: Springer Science & Business Media

Published: 1999-11-23

Total Pages: 556

ISBN-13: 9783540660996

DOWNLOAD EBOOK

The advent of high-speed computers has made it possible for the first time to calculate values from models accurately and rapidly. Researchers and engineers thus have a crucial means of using numerical results to modify and adapt arguments and experiments along the way. Every facet of technical and industrial activity has been affected by these developments. The objective of the present work is to compile the mathematical knowledge required by researchers in mechanics, physics, engineering, chemistry and other branches of application of mathematics for the theoretical and numerical resolution of physical models on computers. Since the publication in 1924 of the "Methoden der mathematischen Physik" by Courant and Hilbert, there has been no other comprehensive and up-to-date publication presenting the mathematical tools needed in applications of mathematics in directly implementable form.


Measure Theory and Integration

Measure Theory and Integration

Author: M.M. Rao

Publisher: CRC Press

Published: 2018-10-03

Total Pages: 794

ISBN-13: 1351991485

DOWNLOAD EBOOK

Significantly revised and expanded, this authoritative reference/text comprehensively describes concepts in measure theory, classical integration, and generalized Riemann integration of both scalar and vector types-providing a complete and detailed review of every aspect of measure and integration theory using valuable examples, exercises, and applications. With more than 170 references for further investigation of the subject, this Second Edition provides more than 60 pages of new information, as well as a new chapter on nonabsolute integrals contains extended discussions on the four basic results of Banach spaces presents an in-depth analysis of the classical integrations with many applications, including integration of nonmeasurable functions, Lebesgue spaces, and their properties details the basic properties and extensions of the Lebesgue-Carathéodory measure theory, as well as the structure and convergence of real measurable functions covers the Stone isomorphism theorem, the lifting theorem, the Daniell method of integration, and capacity theory Measure Theory and Integration, Second Edition is a valuable reference for all pure and applied mathematicians, statisticians, and mathematical analysts, and an outstanding text for all graduate students in these disciplines.


Abstract Algebra

Abstract Algebra

Author: Claudia Menini

Publisher: CRC Press

Published: 2017-11-22

Total Pages: 784

ISBN-13: 1351991469

DOWNLOAD EBOOK

In one exceptional volume, Abstract Algebra covers subject matter typically taught over the course of two or three years and offers a self-contained presentation, detailed definitions, and excellent chapter-matched exercises to smooth the trajectory of learning algebra from zero to one. Field-tested through advance use in the ERASMUS educational project in Europe, this ambitious, comprehensive book includes an original treatment of representation of finite groups that avoids the use of semisimple ring theory and explains sets, maps, posets, lattices, and other essentials of the algebraic language; Peano's axioms and cardinality; groupoids, semigroups, monoids, groups; and normal subgroups.


Operator Theory, Operator Algebras, and Matrix Theory

Operator Theory, Operator Algebras, and Matrix Theory

Author: Carlos André

Publisher: Birkhäuser

Published: 2018-08-22

Total Pages: 381

ISBN-13: 3319724495

DOWNLOAD EBOOK

This book consists of invited survey articles and research papers in the scientific areas of the “International Workshop on Operator Algebras, Operator Theory and Applications,” which was held in Lisbon in July 2016. Reflecting recent developments in the field of algebras of operators, operator theory and matrix theory, it particularly focuses on groupoid algebras and Fredholm conditions, algebras of approximation sequences, C* algebras of convolution type operators, index theorems, spectrum and numerical range of operators, extreme supercharacters of infinite groups, quantum dynamics and operator algebras, and inverse eigenvalue problems. Establishing bridges between the three related areas of operator algebras, operator theory, and matrix theory, the book is aimed at researchers and graduate students who use results from these areas.