Carbon Sequestration and Its Role in the Global Carbon Cycle

Carbon Sequestration and Its Role in the Global Carbon Cycle

Author: Brian J. McPherson

Publisher: John Wiley & Sons

Published: 2013-05-02

Total Pages: 865

ISBN-13: 1118671791

DOWNLOAD EBOOK

Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 183. For carbon sequestration the issues of monitoring, risk assessment, and verification of carbon content and storage efficacy are perhaps the most uncertain. Yet these issues are also the most critical challenges facing the broader context of carbon sequestration as a means for addressing climate change. In response to these challenges, Carbon Sequestration and Its Role in the Global Carbon Cycle presents current perspectives and research that combine five major areas: The global carbon cycle and verification and assessment of global carbon sources and sinks Potential capacity and temporal/spatial scales of terrestrial, oceanic, and geologic carbon storage Assessing risks and benefits associated with terrestrial, oceanic, and geologic carbon storage Predicting, monitoring, and verifying effectiveness of different forms of carbon storage Suggested new CO2 sequestration research and management paradigms for the future. The volume is based on a Chapman Conference and will appeal to the rapidly growing group of scientists and engineers examining methods for deliberate carbon sequestration through storage in plants, soils, the oceans, and geological repositories.


POTENTIAL OIL-PRONE AREAS IN THE CANE CREEK SHALE PLAY, PARADOX BASIN, UTAH, IDENTIFIED BY EPIFLUORESCENCE MICROSCOPE TECHNIQUES

POTENTIAL OIL-PRONE AREAS IN THE CANE CREEK SHALE PLAY, PARADOX BASIN, UTAH, IDENTIFIED BY EPIFLUORESCENCE MICROSCOPE TECHNIQUES

Author: Thomas C. Chidsey, Jr.

Publisher: Utah Geological Survey

Published: 2017-02-27

Total Pages: 178

ISBN-13: 1557919372

DOWNLOAD EBOOK

The Cane Creek shale of the Pennsylvanian Paradox Formation has produced more than 7.8 million barrels of oil and about 7.9 billion cubic feet of gas from 18 fields in the Paradox Basin of southeastern Utah. The Cane Creek is divided into three intervals—A, B, and C; the B interval is the primary oil producer. Finely crystalline dolomites and sandstones in the B interval have been the main targets of successful horizontal drilling programs. Hydrocarbon shows were recognized using nondestructive epifluorescence (EF) microscope techniques on samples from wells in the northern part of the basin. A new, qualitative visual EF rating system was developed and applied to these samples. A variety of EF ratings from each well were plotted and mapped. This 44-page Special Study provides (1) a summary of the new EF methods used in the study; (2) detailed petrographic and EF descriptions of Cane Creek samples for 31 wells (in three appendices); (3) 16 maps showing potential oil-prone areas for the entire Cane Creek and the A, B, and C intervals; and (4) a statistical analysis of the EF data. The study will help petroleum companies determine exploration strategies and land acquisition areas. It will also be a reference for government land management agencies, county planners, and local landowners in decision making processes and resource assessments.