Thermal Inertia in Energy Efficient Building Envelopes

Thermal Inertia in Energy Efficient Building Envelopes

Author: Francesca Stazi

Publisher: Butterworth-Heinemann

Published: 2017-08-29

Total Pages: 376

ISBN-13: 0128139714

DOWNLOAD EBOOK

The design and construction of the appropriate building envelope is one of the most effective ways for improving a building's thermal performance. Thermal Inertia in Energy Efficient Building Envelopes provides the optimal solutions, tools and methods for designing the energy efficient envelopes that will reduce energy consumption and achieve thermal comfort and low environmental impact. Thermal Inertia in Energy Efficient Building Envelopes provides experimental data, technical solutions and methods for quantifying energy consumption and comfort levels, also considering dynamic strategies such as thermal inertia and natural ventilation. Several type of envelopes and their optimal solutions are covered, including retrofit of existing envelopes, new solutions, passive systems such as ventilated facades and solar walls. The discussion also considers various climates (mild or extreme) and seasons, building typology, mode of use of the internal environment, heating profiles and cross-ventilation - Experimental investigations on real case studies, to explore in detail the behaviour of different envelopes - Laboratory tests on existing insulation to quantify the actual performances - Analytical simulations in dynamic conditions to extend the boundary conditions to other climates and usage profiles and to consider alternative insulation strategies - Evaluation of solutions sustainability through the quantification of environmental and economic impacts with LCA analysis; including global cost comparison between the different scenarios - Integrated evaluations between various aspects such as comfort, energy saving, and sustainability


Building Thermal Envelope

Building Thermal Envelope

Author: Jorge de Brito

Publisher: MDPI

Published: 2020-03-27

Total Pages: 244

ISBN-13: 3039285181

DOWNLOAD EBOOK

This book results from a Special Issue published in Energies, entitled “Building Thermal Envelope". Its intent is to identify emerging research areas within the field of building thermal envelope solutions and contribute to the increased use of more energy-efficient solutions in new and refurbished buildings. Its contents are organized in the following sections: Building envelope materials and systems envisaging indoor comfort and energy efficiency; Building thermal and energy modelling and simulation; Lab test procedures and methods of field measurement to assess the performance of materials and building solutions; Smart materials and renewable energy in building envelope; Adaptive and intelligent building envelope; and Integrated building envelope technologies for high performance buildings and cities.


Florida Building Code - Energy Conservation, 7th Edition (2020)

Florida Building Code - Energy Conservation, 7th Edition (2020)

Author: Florida Building Commission

Publisher:

Published: 2020-07

Total Pages:

ISBN-13: 9781952468179

DOWNLOAD EBOOK

The 7th Edition (2020) update to the Florida Building Code: Energy Conservation is a fully integrated publication that updates the 6th Edition 2017 Florida Building Code: Energy Conservation using the latest changes to the 2018 International Energy Conservation Code® with customized amendments adopted statewide. Chapter tabs are also included. Effective Date: December 31, 2020


PCM-Based Building Envelope Systems

PCM-Based Building Envelope Systems

Author: Benjamin Duraković

Publisher: Springer

Published: 2021-01-24

Total Pages: 190

ISBN-13: 9783030383374

DOWNLOAD EBOOK

PCM Enhanced Building Envelopes presents the latest research in the field of thermal energy storage technologies that can be applied to solar heating and cooling with the aim of shifting and reducing building energy demand. It discusses both practical and technical issues, as well as the advantages of using common phase change materials (PCMs) in buildings as a more efficient, novel solution for passive solar heating/cooling strategies. The book includes qualitative and quantitative descriptions of the science, technology and practices of PCM-based building envelopes, and reflects recent trends by placing emphasis on energy storage solutions within building walls, floors, ceilings, façades, windows, and shading devices. With the aim of assessing buildings’ energy performance, the book provides advanced modeling and simulation tools as a theoretical basis for the analysis of PCM-based building envelopes in terms of heat storage and transfer. This book will be of interest to all those dealing with building energy analysis such as researchers, academics, students and professionals in the fields of mechanical and civil engineering and architectural design


Alternative Envelope Components for Energy-Efficient Buildings

Alternative Envelope Components for Energy-Efficient Buildings

Author: Ana-Maria Dabija

Publisher: Springer Nature

Published: 2021-08-24

Total Pages: 105

ISBN-13: 3030709604

DOWNLOAD EBOOK

This book examines ways of saving energy by using green roofs and facades, solar devices such as building-integrated photovoltaics (BIPV), and thermal solar panels, as components of energy-efficient building envelopes. The author takes an interdisciplinary / multidisciplinary approach to the subject that analyzes several different scientific fields connected to building research—sustainability, sustainable architecture, energy efficiency in buildings, and building envelopes—while approaching other collateral domains, including history, archaeology, botanics, physics, engineering, and landscape architecture. Alternative Envelope Components for Energy-Efficient Buildings will be a welcome resource for researchers, students, and postgraduates in the fields of energy, building materials, and renewable energy, as well as architects, engineers, and specialists in industries related to building products. Looks at the impact of building envelopes on energy usage; Offers readers an introduction to the principles of sustainability; Presents passive and active approaches to using solar devices.


Exergy Analysis and Thermoeconomics of Buildings

Exergy Analysis and Thermoeconomics of Buildings

Author: Jose M Sala-Lizarraga

Publisher: Butterworth-Heinemann

Published: 2019-10-01

Total Pages: 1114

ISBN-13: 0128176121

DOWNLOAD EBOOK

Quantifying exergy losses in the energy supply system of buildings reveals the potential for energy improvement, which cannot be discovered using conventional energy analysis. Thermoeconomics combines economic and thermodynamic analysis by applying the concept of cost (an economic concept) to exergy, as exergy is a thermodynamic property fit for this purpose, in that it combines the quantity of energy with its quality factor. Exergy Analysis and Thermoeconomics of Buildings applies exergy analysis methods and thermoeconomics to the built environment. The mechanisms of heat transfer throughout the envelope of buildings are analyzed from an exergy perspective and then to the building thermal installations, analyzing the different components, such as condensing boilers, absorption refrigerators, microcogeneration plants, etc., including solar installations and finally the thermal facilities as a whole. A detailed analysis of the cost formation process is presented, which has its physical roots firmly planted in the second law of thermodynamics. The basic principles and the rules of cost allocation, in energy units (exergy cost), in monetary units (exergoeconomic cost), and in CO2 emissions (exergoenvironmental cost), based on the so-called Exergy Cost Theory are presented and applied to thermal installations of buildings. Clear and rigorous in its exposition, Exergy Analysis and Thermoeconomics of Buildings discusses exergy analysis and thermoeconomics and the role they could play in the analysis and design of building components, either the envelope or the thermal facilities, as well as the diagnosis of thermal installations. This book moves progressively from introducing the basic concepts to applying them. Exergy Analysis and Thermoeconomics of Buildings provides examples of specific cases throughout this book. These cases include real data, so that the results obtained are useful to interpret the inefficiencies and losses that truly occur in actual installations; hence, the assessment of their effects encourages the manner to improve efficiency. Applies exergy analysis methods for the installation of building thermal facilities equipment components, including pipes, valves, heat exchangers, boilers and heat pumps Helps readers determine the operational costs of heating and cooling building systems Includes exergy analysis methods that are devoted to absorption refrigerators, adsorption cooling systems, basic air conditioning processes, ventilation systems and solar systems, either thermal and PV Discusses the direct application of exergy analysis concepts, including examples of buildings with typical heating, DHW and air conditioning installations


Application of Bamboo in Building Envelope

Application of Bamboo in Building Envelope

Author: Zujian Huang

Publisher: Springer

Published: 2019-05-14

Total Pages: 338

ISBN-13: 3030120325

DOWNLOAD EBOOK

This book offers a comprehensive overview of the use of bamboo in building industry. It systematically demonstrates bamboo’s utility in terms of its properties, describing the material properties of typical industrial bamboo products, and discussing their performance evaluation and optimization as building components and in the creation of building envelopes. The book also includes examples of the high-value utilization of bamboo forest resources. Further, it examines how building performance may be affected by conditions such as climate. Including insights from material science, construction design, building physics and building climatology, the book also provides data obtained from technology and market status investigation, laboratory test and the computer simulation.This book appeals to scientists and professionals, as it introduces and tests various bamboo products, demonstrating the advantages and disadvantages for each one. The book is also a valuable resource for civil engineers and students interested in this unique plant material and its application in the building industry.


Development of Thermal Envelope Design Guidelines for Federal Office Buildings

Development of Thermal Envelope Design Guidelines for Federal Office Buildings

Author: Andrew K. Persily

Publisher:

Published: 1990

Total Pages: 102

ISBN-13:

DOWNLOAD EBOOK

Office building envelopes are generally successful in meeting a range of structural, aesthetic and thermal requirements. However, poor thermal envelope performance will occur when there are discontinuities in the envelope insulation and air barrier systems, such as thermal bridges and air leakage sites. These discontinuities result from designs that do not adequately account for heat, air and moisture transmission, with many thermal defects being associated with inappropriate or inadequate detailing of the connections of envelope components. Despite the existence of these thermal envelope performance problems, information is available to design and construct envelopes that do perform well. In order to close the gap between available knowledge and current practice, the Public Buildings Service of the General Services Administration has entered into an interagency agreement with the Center for Building Technology of the National Institute of Standards and Technology to develop thermal envelope design guidelines for federal office buildings. The goal of this project is to transfer the knowledge on thermal envelope design and performance from the building research, design and construction communities into a form that will be used by building design professionals. This report describes the NIST/GSA envelope design guidelines development at the end of the first year of effort on the project. The effort to this point has consisted of a literature review of research results and technical information on thermal envelope performance and design, an assessment of existing design guidelines as they relate to the thermal envelope, and the development of a format and outline for the design guidelines.


PCM-Enhanced Building Components

PCM-Enhanced Building Components

Author: Jan Kośny

Publisher: Springer

Published: 2015-05-07

Total Pages: 281

ISBN-13: 3319142860

DOWNLOAD EBOOK

Presenting an overview of the use of Phase Change Materials (PCMs) within buildings, this book discusses the performance of PCM-enhanced building envelopes. It reviews the most common PCMs suitable for building applications, and discusses PCM encapsulation and packaging methods. In addition to this, it examines a range of PCM-enhanced building products in the process of development as well as examples of whole-building-scale field demonstrations. Further chapters discuss experimental and theoretical analyses (including available software) to determine dynamic thermal and energy performance characteristics of building enclosure components containing PCMs, and present different laboratory and field testing methods. Finally, a wide range of PCM building products are presented which are commercially available worldwide. This book is intended for students and researchers of mechanical, architectural and civil engineering and postgraduate students of energy analysis, dynamic design of building structures, and dynamic testing procedures. It also provides a useful resource for professionals involved in architectural and mechanical-civil engineering design, thermal testing and PCM manufacturing.


Cost-Effective Energy Efficient Building Retrofitting

Cost-Effective Energy Efficient Building Retrofitting

Author: F. Pacheco-Torgal

Publisher: Woodhead Publishing

Published: 2017-01-03

Total Pages: 633

ISBN-13: 0081012276

DOWNLOAD EBOOK

Cost-Effective Energy Efficient Building Retrofitting:Materials, Technologies, Optimization and Case Studies provides essential knowledge for civil engineers, architects, and other professionals working in the field of cost-effective energy efficient building retrofitting. The building sector is responsible for high energy consumption and its global demand is expected to grow as each day there are approximately 200,000 new inhabitants on planet Earth. The majority of electric energy will continue to be generated from the combustion of fossil fuels releasing not only carbon dioxide, but also methane and nitrous oxide. Energy efficiency measures are therefore crucial to reduce greenhouse gas emissions of the building sector. Energy efficient building retrofitting needs to not only be technically feasible, but also economically viable. New building materials and advanced technologies already exist, but the knowledge to integrate all active components is still scarce and far from being widespread among building industry stakeholders. - Emphasizes cost-effective methods for the refurbishment of existing buildings, presenting state-of-the-art technologies - Includes detailed case studies that explain various methods and Net Zero Energy - Explains optimal analysis and prioritization of cost effective strategies