Written by eminent researchers and renown authors of numerous publications in the buckling structures field. Deals with experimental investigation in the industry. Covers the conventional and more unconventional methods for testing for a wide variety of structures. Various parameters which may influence the test results are systemically highlighted including, imperfections, boundary conditions, loading conditions as well as the effects of holes and cut-outs.
* Edited by Josef Singer, the world's foremost authority on structural buckling. * Time-saving and cost-effective design data for all structural, mechanical, and aerospace engineering researchers.
Offshore oil and gas production was conducted throughout the entire 20th century, but the industry's modern importance and vibrancy did not start until the early 1970s, when the North Sea became a major producer. Since then, the expansion of the offshore oil industry has been continuous and rapid. Pipelines, and more generally long tubular structures, are major oil and gas industry tools used in exploration, drilling, production, and transmission. Installing and operating tubular structures in deep waters places unique demands on them. Technical challenges within the field have spawned significant research and development efforts in a broad range of areas.Volume I addresses problems of buckling and collapse of long inelastic cylinders under various loads encountered in the offshore arena. Several of the solutions are also directly applicable to land pipelines. The approach of Mechanics of Offshore Pipelines is problem oriented. The background of each problem and scenario are first outlined and each discussion finishes with design recommendations.* New and classical problems addressed - investigated through a combination of experiments and analysis* Each chapter deals with a specific mechanical problem that is analyzed independently* The fundamental nature of the problems makes them also applicable to other fields, including tubular components in nuclear reactors and power plants, aerospace structures, automotive and civil engineering structures, naval vehicles and structures
This unique compendium presents some new topics related to thin-walled structures, like beams, plates and shells used in aerospace structures. It highlights their dynamic behaviors and also the correlation between compressive loading and natural frequency to enable a correlation between the two, yielding a valuable non-destructive tool, to predict buckling for thin-walled structures.This useful reference text combines valuable data on metal materials and composite materials together with new adaptive and smart materials like piezoelectricity, shape memory alloys and optic fibers, which form the present state of the art in thin-walled structure domain.
Seismic Design and Analysis of Tanks A detailed view on the effects of seismic activity on tank structures As the use of above-ground and underground storage tanks (ASTs and USTs) continues to grow—with approximately 545,000 in the USA alone—the greatest threat to ASTs and USTs is earthquakes, causing the contamination of groundwater, a vital source of drinking water throughout the world. These tanks suffer a great deal of strain during an earthquake, as a complicated pattern of stress affects them, such that poorly designed tanks have leaked, buckled, or even collapsed during seismic events. Furthermore, in oil and gas industrial plants, the risk of damage is even more critical due to the effects of explosion, collapse, and air or soil contamination by chemical fluid spillages. Seismic Design and Analysis of Tanks provides the first in-depth discussion of the principles and applications of shell structure design and earthquake engineering analyses focused on tank structures, and it explains how these methodologies can help prevent the destruction of ASTs and USTs during earthquakes. Providing a thorough examination of the design, analysis, and performance of steel, reinforced concrete, and precast tanks, this book takes a look at tanks that are above-ground, underground, or elevated, anchored and unanchored, and rigid or flexible, and evaluates the efficacy of each method during times of seismic shaking—and it does so without getting bogged down in impenetrable mathematics and theory. Seismic Design and Analysis of Tanks readers will also find: A global approach to the best analytical and practical solutions available in each region: discussion of the latest US codes and standards from the American Society of Civil Engineers (ACSE 7), the American Concrete Institute (ACI 350,3, 371.R), the American Water Works Association (AWWA D100, D110, D115), and the American Petroleum Institute (API 650) an overview of the European codes and standards, including Eurocode 8-4 and CEN-EN 14015 Hundreds of step-by-step equations, accompanied by illustrations Photographs illustrating real-world damage to tanks caused by seismic events Perfect for practising structural engineers, geotechnical engineers, civil engineers, and engineers of all kinds who are responsible for the design, analysis, and performance of tanks and their foundations—as well as students studying engineering—Seismic Design and Analysis of Tanks is a landmark text, the first work of its kind to deal with the seismic engineering performance of all types of storage tanks.
Advances in Engineering Materials, Structures and Systems: Innovations, Mechanics and Applications comprises 411 papers that were presented at SEMC 2019, the Seventh International Conference on Structural Engineering, Mechanics and Computation, held in Cape Town, South Africa, from 2 to 4 September 2019. The subject matter reflects the broad scope of SEMC conferences, and covers a wide variety of engineering materials (both traditional and innovative) and many types of structures. The many topics featured in these Proceedings can be classified into six broad categories that deal with: (i) the mechanics of materials and fluids (elasticity, plasticity, flow through porous media, fluid dynamics, fracture, fatigue, damage, delamination, corrosion, bond, creep, shrinkage, etc); (ii) the mechanics of structures and systems (structural dynamics, vibration, seismic response, soil-structure interaction, fluid-structure interaction, response to blast and impact, response to fire, structural stability, buckling, collapse behaviour); (iii) the numerical modelling and experimental testing of materials and structures (numerical methods, simulation techniques, multi-scale modelling, computational modelling, laboratory testing, field testing, experimental measurements); (iv) innovations and special structures (nanostructures, adaptive structures, smart structures, composite structures, bio-inspired structures, shell structures, membranes, space structures, lightweight structures, long-span structures, tall buildings, wind turbines, etc); (v) design in traditional engineering materials (steel, concrete, steel-concrete composite, aluminium, masonry, timber, glass); (vi) the process of structural engineering (conceptualisation, planning, analysis, design, optimization, construction, assembly, manufacture, testing, maintenance, monitoring, assessment, repair, strengthening, retrofitting, decommissioning). The SEMC 2019 Proceedings will be of interest to civil, structural, mechanical, marine and aerospace engineers. Researchers, developers, practitioners and academics in these disciplines will find them useful. Two versions of the papers are available. Short versions, intended to be concise but self-contained summaries of the full papers, are in this printed book. The full versions of the papers are in the e-book.
This book provides an in-depth treatment of the study of the stability of engineering structures. Contributions from internationally recognized leaders in the field ensure a wide coverage of engineering disciplines in which structural stability is of importance, in particular the analytical and numerical modelling of structural stability applied to aeronautical, civil, marine and offshore structures. The results from a number of comprehensive experimental test programs are also presented, thus enhancing our understanding of stability phenomena as well as validating the analytical and computational solution schemes presented. A variety of structural materials are investigated with special emphasis on carbon-fibre composites, which are being increasingly utilized in weight-critical structures. Instabilities at the meso- and micro-scales are also discussed. This book will be particularly relevant to professional engineers, graduate students and researchers interested in structural stability./a
This book provides an in-depth treatment of the study of the stability of engineering structures. Contributions from internationally recognized leaders in the field ensure a wide coverage of engineering disciplines in which structural stability is of importance, in particular the analytical and numerical modelling of structural stability applied to aeronautical, civil, marine and offshore structures. The results from a number of comprehensive experimental test programs are also presented, thus enhancing our understanding of stability phenomena as well as validating the analytical and computational solution schemes presented. A variety of structural materials are investigated with special emphasis on carbon-fibre composites, which are being increasingly utilized in weight-critical structures. Instabilities at the meso- and micro-scales are also discussed. This book will be particularly relevant to professional engineers, graduate students and researchers interested in structural stability.
This Festschrift marks the retirement of Professor Chris Calladine, FRS after 42 years on the teaching staff of the Department of Engineering, University of Cambridge. It contains a series of papers contributed by his former students, colleagues, and friends. Chris Calladine's research has ranged very widely across the field of struc tural mechanics, with a particular focus on the plastic deformation of solids and structures, and the behaviour of thin-shell structures. His insightful books on Engineering Plasticity and Theory of Shell Structures have been appreciated by many generations of students at Cambridge and elsewhere. His scientific contri bution outside engineering, in molecular structures, is at least as significant, and he is unique among engineers in having co-authored a book on DNA. Also, he has been keenly interested in the research of many students and colleagues, and on many occasions his quick grasp and physical insight have helped a student, and sometimes a colleague, find the nub of the problem without unnecessary effort. Many of the papers contained in this volume gratefully acknowledge this generous contribution. We thank Professor G. M. l. Gladwell for reading through all of the contri butions, Mrs R. Baxter and Mrs o. Constantinides for help in preparing this volume, Godfrey Argent Studio for permission to reproduce Calladine's por trait for the Royal Society, and Dr A. Schouwenburg -from Kluwer- for his assistance. Horace R. Drew Sergio Pellegrino ix CHRIS CALLADINE SOME THOUGHTS ON RESEARCH c. R.