Bubble Nucleation and Dynamics

Bubble Nucleation and Dynamics

Author: Ho-young Kwak

Publisher:

Published: 2020-04-21

Total Pages: 372

ISBN-13: 9781536169973

DOWNLOAD EBOOK

For phenomena involving bubble nucleation, the molecular cluster model is used to predict the tensile strength and superheat limit of liquids and the amount of decompression for gaseous bubble nucleation in supersaturated solutions. The book investigates various gaseous bubble nucleation events including the bubble formation in gas-water solutions, CO bubble formation in iron melts, the formation of microcellular foams in polymers, the nucleation of nano-sized H2O bubbles in rhyolite melts, and bubble nucleation in shear flow fields. The book also investigates vaporous bubble nucleation events such as bubble formation on a cavity-free surface and inside a solid nanopore in 3M NaCl solution, superheat limit of liquids, and bubble nucleation near the absolute zero temperature by quantum tunnelling in liquid helium. For bubble dynamics phenomena, a set of homologous solutions of the Navier-Stokes equations for evolving spherical bubbles are used to treat gaseous bubble growth in organic solutions, polymer solutions, and in viscous rhyolitic melts. The growth and collapse of laser-induced vapor bubbles in liquid, and on solid particles is discussed as an example of homologous motion of the spherical object. Sonoluminescence phenomena in water and in sulfuric acid solutions, the pressure and shock wave propagation in bubbly mixtures, the gravitational collapse of Newtonian stars, and the core collapse of supernovas are also treated using these homologous solutions. The motion of a fire-ball generated by a TNT explosion underwater is obtained using a zero gravitational constant in the equation of motion for Newtonian stars.


Cavitation and Bubble Dynamics

Cavitation and Bubble Dynamics

Author: Christopher E. Brennen

Publisher: Cambridge University Press

Published: 2014

Total Pages: 269

ISBN-13: 1107644763

DOWNLOAD EBOOK

Cavitation and Bubble Dynamics deals with fundamental physical processes of bubble dynamics and cavitation for graduate students and researchers.


The Acoustic Bubble

The Acoustic Bubble

Author: T Leighton

Publisher: Academic Press

Published: 2012-12-02

Total Pages: 641

ISBN-13: 0323144136

DOWNLOAD EBOOK

The Acoustic Bubble describes the interaction of acoustic fields with bubbles in liquid. The book consists of five chapters. Chapter 1 provides a basic introduction to acoustics, including some of the more esoteric phenomena that can be seen when high-frequency high-intensity underwater sound is employed. Chapter 2 discusses the nucleation of cavitation and basic fluid dynamics, while Chapter 3 draws together the acoustics and bubble dynamics to discuss the free oscillation of a bubble and acoustic emissions from such activity. The acoustic probes that are often applied to study the behavior of a bubble when an externally-applied acoustic field drives it into oscillation is deliberated in Chapter 4. The last chapter outlines a variety of effects associated with acoustically-induced bubble activity. The bubble detection, sonoluminescence, sonochemistry, and pulse enhancement are also covered. This publication is a good reference for physics and engineering students and researchers intending to acquire knowledge of the acoustic interactions of acoustic fields with bubbles.


Cavitation in Non-Newtonian Fluids

Cavitation in Non-Newtonian Fluids

Author: Emil Brujan

Publisher: Springer Science & Business Media

Published: 2010-09-28

Total Pages: 274

ISBN-13: 3642153437

DOWNLOAD EBOOK

Non-Newtonian properties on bubble dynamics and cavitation are fundamentally different from those of Newtonian fluids. The most significant effect arises from the dramatic increase in viscosity of polymer solutions in an extensional flow, such as that generated about a spherical bubble during its growth or collapse phase. In addition, many biological fluids, such as blood, synovial fluid, and saliva, have non-Newtonian properties and can display significant viscoelastic behaviour. This monograph elucidates general aspects of bubble dynamics and cavitation in non-Newtonian fluids and applies them to the fields of biomedicine and bioengineering. In addition it presents many examples from the process industries. The field is strongly interdisciplinary and the numerous disciplines involve have and will continue to overlook and reinvent each others’ work. This book helps researchers to think intuitively about the diverse physics of these systems, to attempt to bridge the various communities involved, and to convey the interest, elegance, and variety of physical phenomena that manifest themselves on the micrometer and microsecond scales.


Acoustic Cavitation and Bubble Dynamics

Acoustic Cavitation and Bubble Dynamics

Author: Kyuichi Yasui

Publisher: Springer

Published: 2017-10-26

Total Pages: 131

ISBN-13: 3319682377

DOWNLOAD EBOOK

This brief explains in detail fundamental concepts in acoustic cavitation and bubble dynamics, and describes derivations of the fundamental equations of bubble dynamics in order to support those readers just beginning research in this field. Further, it provides an in-depth understanding of the physical basis of the phenomena. With regard to sonochemistry, the brief presents the results of numerical simulations of chemical reactions inside a bubble under ultrasound, especially for a single-bubble system and including unsolved problems. Written so as to be accessible both with and without prior knowledge of fundamental fluid dynamics, the brief offers a valuable resource for students and researchers alike, especially those who are unfamiliar with this field. A grasp of fundamental undergraduate mathematics such as partial derivative and fundamental integration is advantageous; however, even without any background in mathematics, readers can skip the equations and still understand the fundamental physics of the phenomena using the book’s wealth of illustrations and figures. As such, it is also suitable as an introduction to the field.


Characterization of Cavitation Bubbles and Sonoluminescence

Characterization of Cavitation Bubbles and Sonoluminescence

Author: Rachel Pflieger

Publisher: Springer

Published: 2019-01-31

Total Pages: 82

ISBN-13: 3030117170

DOWNLOAD EBOOK

This book presents the latest research on fundamental aspects of acoustic bubbles, and in particular on various complementary ways to characterize them. It starts with the dynamics of a single bubble under ultrasound, and then addresses few-bubble systems and the formation and development of bubble structures, before briefly reviewing work on isolated bubbles in standing acoustic waves (bubble traps) and multibubble systems where translation and interaction of bubbles play a major role. Further, it explores the interaction of bubbles with objects, and highlights non-spherical bubble dynamics and the respective collapse geometries. It also discusses the important link between bubble dynamics and energy focusing in the bubble, leading to sonochemistry and sonoluminescence. The second chapter focuses on the emission of light by cavitation bubbles at collapse (sonoluminescence) and on the information that can be gained by sonoluminescence (SL) spectroscopy, e.g. the conditions reached inside the bubbles or the nature of the excited species formed. This chapter also includes a section on the use of SL intensity measurement under pulsed ultrasound as an indirect way to estimate bubble size and size distribution. Lastly, since one very important feature of cavitation systems is their sonochemical activity, the final chapter presents chemical characterizations, the care that should be taken in using them, and the possible visualization of chemical activity. It also explores the links between bubble dynamics, SL spectroscopy and sonochemical activity. This book provides a fundamental basis for other books in the Molecular Science: Ultrasound and Sonochemistry series that are more focused on applied aspects of sonochemistry. A basic knowledge of the characterization of cavitation bubbles is indispensable for the optimization of sonochemical processes, and as such the book is useful for specialists (researchers, engineers, PhD students etc.) working in the wide area of ultrasonic processing.


Mechanics and Physics of Bubbles in Liquids

Mechanics and Physics of Bubbles in Liquids

Author: Leen van Wijngaarden

Publisher: Springer Science & Business Media

Published: 1982-03-31

Total Pages: 402

ISBN-13: 9789024726257

DOWNLOAD EBOOK

A IUTAM (International Union of Theoretical and Applied Mechanics) Sympo sium 'Mechanics and Physics of Bubbles in Liquids' was held at Pasadena, Calif., USA from 15 through 19 June 1981. The present volume contains the printed version of nearly all papers read at the Symposium. The study of the behaviour of bubbles in liquids was originally stimu lated by problems in cavitation and in boiling ofliquids. Today research is initiated by problems in many other fields as well. In this respect a growing interest from the side of biomechanics may be mentioned. Ordering of the papers could be done either according to the various mechanical and physical aspects of the subject or according to the fields of application. The presentaton at the Symposium contained a bit of both; there was a session on physico-chemical aspects for example and also a session on biological applications. The subdivision in this volume follows roughly the sessions in the Symposium. Most of them start with a paper of a survey nature, reporting progress made in recent years. Here, as in other fields of engineering science, one notes the important part played by experimental techniques and by numerical analysis.


Foaming with Supercritical Fluids

Foaming with Supercritical Fluids

Author: Ernesto Di Maio

Publisher: Elsevier

Published: 2021-11-06

Total Pages: 486

ISBN-13: 0444637362

DOWNLOAD EBOOK

Foaming with Supercritical Fluids, Volume Nine provides a comprehensive description of the use of supercritical fluids as blowing agents in polymer foaming. To this aim, the fundamental issues on which the proper design and control of this process are rooted are discussed in detail, with specific attention devoted to the theoretical and experimental aspects of sorption thermodynamics of a blowing agent within a polymer, the effect of the absorbed blowing agent on the thermal, interfacial and rheological properties of the expanding matter, and the phase separation of the gaseous phase, and of the related bubble nucleation and growth phenomena. Several foaming technologies based on the use of supercritical blowing agents are then described, addressing the main issues in the light of the underlying chemical-physical phenomena. - Offers strong fundamentals on polymer properties important on foaming - Outlines the use of supercritical fluids for foaming - Covers theoretical points-of-view, including foam formation of the polymer/gas solution to the setting of the final foam - Discusses the several processing technologies and applications


Bubble and Foam Chemistry

Bubble and Foam Chemistry

Author: Robert J. Pugh

Publisher: Cambridge University Press

Published: 2016-09-08

Total Pages: 447

ISBN-13: 1107090571

DOWNLOAD EBOOK

Combining academic and industrial viewpoints, this is the definitive stand-alone resource for researchers, students and industrialists. With the latest on foam research, test methods and real-world applications, it provides straightforward answers to why foaming occurs, how it can be avoided, and how different degrees of antifoaming can be achieved.


Incompressible Flow

Incompressible Flow

Author: Ronald L. Panton

Publisher: John Wiley & Sons

Published: 2013-08-05

Total Pages: 912

ISBN-13: 1118013433

DOWNLOAD EBOOK

The most teachable book on incompressible flow— now fully revised, updated, and expanded Incompressible Flow, Fourth Edition is the updated and revised edition of Ronald Panton's classic text. It continues a respected tradition of providing the most comprehensive coverage of the subject in an exceptionally clear, unified, and carefully paced introduction to advanced concepts in fluid mechanics. Beginning with basic principles, this Fourth Edition patiently develops the math and physics leading to major theories. Throughout, the book provides a unified presentation of physics, mathematics, and engineering applications, liberally supplemented with helpful exercises and example problems. Revised to reflect students' ready access to mathematical computer programs that have advanced features and are easy to use, Incompressible Flow, Fourth Edition includes: Several more exact solutions of the Navier-Stokes equations Classic-style Fortran programs for the Hiemenz flow, the Psi-Omega method for entrance flow, and the laminar boundary layer program, all revised into MATLAB A new discussion of the global vorticity boundary restriction A revised vorticity dynamics chapter with new examples, including the ring line vortex and the Fraenkel-Norbury vortex solutions A discussion of the different behaviors that occur in subsonic and supersonic steady flows Additional emphasis on composite asymptotic expansions Incompressible Flow, Fourth Edition is the ideal coursebook for classes in fluid dynamics offered in mechanical, aerospace, and chemical engineering programs.