Plant Breeding

Plant Breeding

Author: H.K. Jain

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 813

ISBN-13: 9400710402

DOWNLOAD EBOOK

The Indian Society of Genetics and Plant Breeding was established in 1941 in recognition of the growing contribution of improved crop varieties to the country's agriculture. Scientific plant breeding had started inIndia soon after the rediscovery of Mendel's laws of heredity. The Indian Agricultural Research Institute set up in 1905 and a number of Agricultural Colleges in different parts of the country carried out some of the earliest work mostly inthe form of pure-line selections. In subsequent years, hybridization programmes in crops like wheat, rice, oilseeds, grain legumes, sugarcane and cotton yielded a large number of improved cultivars with significantly higher yields. A turning point came in the 1960s with the development of hybrids in several crops including inter-specific hybrids in cotton. And when new germplasm with dwarfing genes became available in wheat and rice from CIMMYT and IRRI, respectively,Indian plant breeders quickly incorporated these genes into the genetic background of the country's widely grown varieties with excellent grain quality and other desirable traits. This was to mark the beginning of modem agriculture in India as more and more varieties were developed, characterized by a high harvest index and response to modem farm inputs like the inorganic fertilizers . India's green revolution which has led to major surpluses offood grains and othercommodities like sugar and cotton has been made possible by the work of one of the largest groups of plant breeders working in a coordinated network.


Induced Mutations in Plant Breeding

Induced Mutations in Plant Breeding

Author: W. Gottschalk

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 250

ISBN-13: 3642819974

DOWNLOAD EBOOK

Mutation breeding has been introduced into modern plant breeding in the early 1940's. In spite of pessimistic predictions, the application of experimental mutagenesis has led to encouraging results demonstrating that mutation breeding is a well-functioning method in many crops. So far, more than 500 varieties, developed by means of induced mutations, have been officially released; others have been approved for registration. Many mutants with characters of agronomic interest cannot be utilized directly because of their unsatisfying yielding capacities, or of other negative traits which are partly due to the pleiotropic action of the mutant genes. Sometimes their negative selection value can be overcome by transferring them into the genomes of other varieties. According to experience available, the efficiency of mutant genes can conSiderably vary depending on the genotypic background in which they become effective. The interactions between mutant genes and genotypic back ground cannot be predicted. Therefore, mutants with valuable traits should be crossed with many varieties and strains in order to discern positive and negative interactions. In this way, genotypes can be selected in which the mutant gene is able to express its action without showing negative by-effects. This procedure has been used for about 10 years by combining the methods of mutation and crossbreeding. Mutation breeding is predominantly used in annual diploid and allo polyploid self-fertilizing crops, while it causes much more difficulties in cross-pollinating species.