Braids, Links, and Mapping Class Groups. (AM-82), Volume 82

Braids, Links, and Mapping Class Groups. (AM-82), Volume 82

Author: Joan S. Birman

Publisher: Princeton University Press

Published: 2016-03-02

Total Pages: 241

ISBN-13: 1400881420

DOWNLOAD EBOOK

The central theme of this study is Artin's braid group and the many ways that the notion of a braid has proved to be important in low-dimensional topology. In Chapter 1 the author is concerned with the concept of a braid as a group of motions of points in a manifold. She studies structural and algebraic properties of the braid groups of two manifolds, and derives systems of defining relations for the braid groups of the plane and sphere. In Chapter 2 she focuses on the connections between the classical braid group and the classical knot problem. After reviewing basic results she proceeds to an exploration of some possible implications of the Garside and Markov theorems. Chapter 3 offers discussion of matrix representations of the free group and of subgroups of the automorphism group of the free group. These ideas come to a focus in the difficult open question of whether Burau's matrix representation of the braid group is faithful. Chapter 4 is a broad view of recent results on the connections between braid groups and mapping class groups of surfaces. Chapter 5 contains a brief discussion of the theory of "plats." Research problems are included in an appendix.


A Primer on Mapping Class Groups

A Primer on Mapping Class Groups

Author: Benson Farb

Publisher: Princeton University Press

Published: 2012

Total Pages: 490

ISBN-13: 0691147949

DOWNLOAD EBOOK

The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. A Primer on Mapping Class Groups begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn-Nielsen-Baer theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification.


Braids, Links, and Mapping Class Groups

Braids, Links, and Mapping Class Groups

Author: Joan S. Birman

Publisher: Princeton University Press

Published: 1974

Total Pages: 244

ISBN-13: 9780691081496

DOWNLOAD EBOOK

The central theme of this study is Artin's braid group and the many ways that the notion of a braid has proved to be important in low-dimensional topology. In Chapter 1 the author is concerned with the concept of a braid as a group of motions of points in a manifold. She studies structural and algebraic properties of the braid groups of two manifolds, and derives systems of defining relations for the braid groups of the plane and sphere. In Chapter 2 she focuses on the connections between the classical braid group and the classical knot problem. After reviewing basic results she proceeds to an exploration of some possible implications of the Garside and Markov theorems. Chapter 3 offers discussion of matrix representations of the free group and of subgroups of the automorphism group of the free group. These ideas come to a focus in the difficult open question of whether Burau's matrix representation of the braid group is faithful. Chapter 4 is a broad view of recent results on the connections between braid groups and mapping class groups of surfaces. Chapter 5 contains a brief discussion of the theory of "plats." Research problems are included in an appendix.


Problems on Mapping Class Groups and Related Topics

Problems on Mapping Class Groups and Related Topics

Author: Benson Farb

Publisher: American Mathematical Soc.

Published: 2006-09-12

Total Pages: 384

ISBN-13: 0821838385

DOWNLOAD EBOOK

The appearance of mapping class groups in mathematics is ubiquitous. The book presents 23 papers containing problems about mapping class groups, the moduli space of Riemann surfaces, Teichmuller geometry, and related areas. Each paper focusses completely on open problems and directions. The problems range in scope from specific computations, to broad programs. The goal is to have a rich source of problems which have been formulated explicitly and accessibly. The book is divided into four parts. Part I contains problems on the combinatorial and (co)homological group-theoretic aspects of mapping class groups, and the way in which these relate to problems in geometry and topology. Part II concentrates on connections with classification problems in 3-manifold theory, the theory of symplectic 4-manifolds, and algebraic geometry. A wide variety of problems, from understanding billiard trajectories to the classification of Kleinian groups, can be reduced to differential and synthetic geometry problems about moduli space. Such problems and connections are discussed in Part III. Mapping class groups are related, both concretely and philosophically, to a number of other groups, such as braid groups, lattices in semisimple Lie groups, and automorphism groups of free groups. Part IV concentrates on problems surrounding these relationships. This book should be of interest to anyone studying geometry, topology, algebraic geometry or infinite groups. It is meant to provide inspiration for everyone from graduate students to senior researchers.


Moduli Spaces of Riemann Surfaces

Moduli Spaces of Riemann Surfaces

Author: Benson Farb

Publisher: American Mathematical Soc.

Published: 2013-08-16

Total Pages: 371

ISBN-13: 0821898876

DOWNLOAD EBOOK

Mapping class groups and moduli spaces of Riemann surfaces were the topics of the Graduate Summer School at the 2011 IAS/Park City Mathematics Institute. This book presents the nine different lecture series comprising the summer school, covering a selection of topics of current interest. The introductory courses treat mapping class groups and Teichmüller theory. The more advanced courses cover intersection theory on moduli spaces, the dynamics of polygonal billiards and moduli spaces, the stable cohomology of mapping class groups, the structure of Torelli groups, and arithmetic mapping class groups. The courses consist of a set of intensive short lectures offered by leaders in the field, designed to introduce students to exciting, current research in mathematics. These lectures do not duplicate standard courses available elsewhere. The book should be a valuable resource for graduate students and researchers interested in the topology, geometry and dynamics of moduli spaces of Riemann surfaces and related topics. Titles in this series are co-published with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.


Handbook of Knot Theory

Handbook of Knot Theory

Author: William Menasco

Publisher: Elsevier

Published: 2005-08-02

Total Pages: 502

ISBN-13: 9780080459547

DOWNLOAD EBOOK

This book is a survey of current topics in the mathematical theory of knots. For a mathematician, a knot is a closed loop in 3-dimensional space: imagine knotting an extension cord and then closing it up by inserting its plug into its outlet. Knot theory is of central importance in pure and applied mathematics, as it stands at a crossroads of topology, combinatorics, algebra, mathematical physics and biochemistry. * Survey of mathematical knot theory * Articles by leading world authorities * Clear exposition, not over-technical * Accessible to readers with undergraduate background in mathematics


Office Hours with a Geometric Group Theorist

Office Hours with a Geometric Group Theorist

Author: Matt Clay

Publisher: Princeton University Press

Published: 2017-07-11

Total Pages: 456

ISBN-13: 1400885396

DOWNLOAD EBOOK

Geometric group theory is the study of the interplay between groups and the spaces they act on, and has its roots in the works of Henri Poincaré, Felix Klein, J.H.C. Whitehead, and Max Dehn. Office Hours with a Geometric Group Theorist brings together leading experts who provide one-on-one instruction on key topics in this exciting and relatively new field of mathematics. It's like having office hours with your most trusted math professors. An essential primer for undergraduates making the leap to graduate work, the book begins with free groups—actions of free groups on trees, algorithmic questions about free groups, the ping-pong lemma, and automorphisms of free groups. It goes on to cover several large-scale geometric invariants of groups, including quasi-isometry groups, Dehn functions, Gromov hyperbolicity, and asymptotic dimension. It also delves into important examples of groups, such as Coxeter groups, Thompson's groups, right-angled Artin groups, lamplighter groups, mapping class groups, and braid groups. The tone is conversational throughout, and the instruction is driven by examples. Accessible to students who have taken a first course in abstract algebra, Office Hours with a Geometric Group Theorist also features numerous exercises and in-depth projects designed to engage readers and provide jumping-off points for research projects.


Braid Groups

Braid Groups

Author: Christian Kassel

Publisher: Springer Science & Business Media

Published: 2008-06-28

Total Pages: 349

ISBN-13: 0387685480

DOWNLOAD EBOOK

In this well-written presentation, motivated by numerous examples and problems, the authors introduce the basic theory of braid groups, highlighting several definitions that show their equivalence; this is followed by a treatment of the relationship between braids, knots and links. Important results then treat the linearity and orderability of the subject. Relevant additional material is included in five large appendices. Braid Groups will serve graduate students and a number of mathematicians coming from diverse disciplines.


Foliations and the Geometry of 3-Manifolds

Foliations and the Geometry of 3-Manifolds

Author: Danny Calegari

Publisher: Oxford University Press on Demand

Published: 2007-05-17

Total Pages: 378

ISBN-13: 0198570082

DOWNLOAD EBOOK

This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions. Significant themes returned to throughout the text include the importance of geometry, especially the hyperbolic geometry of surfaces, the importance of monotonicity, especially in1-dimensional and co-dimensional dynamics, and combinatorial approximation, using finite combinatorical objects such as train-tracks, branched surfaces and hierarchies to carry more complicated continuous objects.


Papers on Group Theory and Topology

Papers on Group Theory and Topology

Author: Max Dehn

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 404

ISBN-13: 1461246687

DOWNLOAD EBOOK

The work of Max Dehn (1878-1952) has been quietly influential in mathematics since the beginning of the 20th century. In 1900 he became the first to solve one of the famous Hilbert problems (the third, on the decomposition of polyhedra), in 1907 he collaborated with Heegaard to produce the first survey of topology, and in 1910 he began publishing his own investigations in topology and combinatorial group theory. His influence is apparent in the terms Dehn's algorithm, Dehn's lemma and Dehn surgery (and Dehnsche Gruppenbilder, generally known in English as Cayley diagrams), but direct access to his work has been difficult. No edition of his works has been produced, and some of his most important results were never published, at least not by him. The present volume is a modest attempt to bring Dehn's work to a wider audience, particularly topologists and group theorists curious about the origins of their subject and interested in mining the sources for new ideas. It consists of English translations of eight works : five of Dehn's major papers in topology and combinatorial group theory, and three unpublished works which illuminate the published papers and contain some results not available elsewhere. In addition, I have written a short introduction to each work, summarising its contents and trying to establish its place among related works of Dehn and others, and I have added an appendix on the Dehn-Nielsen theorem (often known simply as Nielsen's theorem) .