Parabolic Boundary Value Problems

Parabolic Boundary Value Problems

Author: Samuil D. Eidelman

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 307

ISBN-13: 3034887671

DOWNLOAD EBOOK

The present monograph is devoted to the theory of general parabolic boundary value problems. The vastness of this theory forced us to take difficult decisions in selecting the results to be presented and in determining the degree of detail needed to describe their proofs. In the first chapter we define the basic notions at the origin of the theory of parabolic boundary value problems and give various examples of illustrative and descriptive character. The main part of the monograph (Chapters II to V) is devoted to a the detailed and systematic exposition of the L -theory of parabolic 2 boundary value problems with smooth coefficients in Hilbert spaces of smooth functions and distributions of arbitrary finite order and with some natural appli cations of the theory. Wishing to make the monograph more informative, we included in Chapter VI a survey of results in the theory of the Cauchy problem and boundary value problems in the traditional spaces of smooth functions. We give no proofs; rather, we attempt to compare different results and techniques. Special attention is paid to a detailed analysis of examples illustrating and complementing the results for mulated. The chapter is written in such a way that the reader interested only in the results of the classical theory of the Cauchy problem and boundary value problems may concentrate on it alone, skipping the previous chapters.


Boundary Value Problems for Elliptic Systems

Boundary Value Problems for Elliptic Systems

Author: J. T. Wloka

Publisher: Cambridge University Press

Published: 1995-07-28

Total Pages: 659

ISBN-13: 0521430119

DOWNLOAD EBOOK

The theory of boundary value problems for elliptic systems of partial differential equations has many applications in mathematics and the physical sciences. The aim of this book is to "algebraize" the index theory by means of pseudo-differential operators and new methods in the spectral theory of matrix polynomials. This latter theory provides important tools that will enable the student to work efficiently with the principal symbols of the elliptic and boundary operators on the boundary. Because many new methods and results are introduced and used throughout the book, all the theorems are proved in detail, and the methods are well illustrated through numerous examples and exercises. This book is ideal for use in graduate level courses on partial differential equations, elliptic systems, pseudo-differential operators, and matrix analysis.


Distributions

Distributions

Author: Pulin Kumar Bhattacharyya

Publisher: Walter de Gruyter

Published: 2012-05-29

Total Pages: 871

ISBN-13: 3110269295

DOWNLOAD EBOOK

This book grew out of a course taught in the Department of Mathematics, Indian Institute of Technology, Delhi, which was tailored to the needs of the applied community of mathematicians, engineers, physicists etc., who were interested in studying the problems of mathematical physics in general and their approximate solutions on computer in particular. Almost all topics which will be essential for the study of Sobolev spaces and their applications in the elliptic boundary value problems and their finite element approximations are presented. Also many additional topics of interests for specific applied disciplines and engineering, for example, elementary solutions, derivatives of discontinuous functions of several variables, delta-convergent sequences of functions, Fourier series of distributions, convolution system of equations etc. have been included along with many interesting examples.


Distributions and Operators

Distributions and Operators

Author: Gerd Grubb

Publisher: Springer Science & Business Media

Published: 2008-10-14

Total Pages: 464

ISBN-13: 0387848940

DOWNLOAD EBOOK

This book gives an introduction to distribution theory, based on the work of Schwartz and of many other people. It is the first book to present distribution theory as a standard text. Each chapter has been enhanced with many exercises and examples.


Non-Homogeneous Boundary Value Problems and Applications

Non-Homogeneous Boundary Value Problems and Applications

Author: Jacques Louis Lions

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 375

ISBN-13: 3642651615

DOWNLOAD EBOOK

1. We describe, at first in a very formaI manner, our essential aim. n Let m be an op en subset of R , with boundary am. In m and on am we introduce, respectively, linear differential operators P and Qj' 0 ~ i ~ 'V. By "non-homogeneous boundary value problem" we mean a problem of the following type: let f and gj' 0 ~ i ~ 'v, be given in function space s F and G , F being a space" on m" and the G/ s spaces" on am" ; j we seek u in a function space u/t "on m" satisfying (1) Pu = f in m, (2) Qju = gj on am, 0 ~ i ~ 'v«])). Qj may be identically zero on part of am, so that the number of boundary conditions may depend on the part of am considered 2. We take as "working hypothesis" that, for fEF and gjEG , j the problem (1), (2) admits a unique solution u E U/t, which depends 3 continuously on the data . But for alllinear probIems, there is a large number of choiees for the space s u/t and {F; G} (naturally linke d together). j Generally speaking, our aim is to determine families of spaces 'ft and {F; G}, associated in a "natural" way with problem (1), (2) and con j venient for applications, and also all possible choiees for u/t and {F; G} j in these families.


Non-Homogeneous Boundary Value Problems and Applications

Non-Homogeneous Boundary Value Problems and Applications

Author: Jacques Louis Lions

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 323

ISBN-13: 3642653936

DOWNLOAD EBOOK

1. Our essential objective is the study of the linear, non-homogeneous problems: (1) Pu = I in CD, an open set in RN, (2) fQjtl = gj on am (boundary of m), lor on a subset of the boundm"J am 1


Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains Volume II

Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains Volume II

Author: Vladimir Maz'ya

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 336

ISBN-13: 303488432X

DOWNLOAD EBOOK

For the first time in the mathematical literature, this two-volume work introduces a unified and general approach to the subject. To a large extent, the book is based on the authors’ work, and has no significant overlap with other books on the theory of elliptic boundary value problems


Hilbert Space, Boundary Value Problems and Orthogonal Polynomials

Hilbert Space, Boundary Value Problems and Orthogonal Polynomials

Author: Allan M. Krall

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 355

ISBN-13: 303488155X

DOWNLOAD EBOOK

The following tract is divided into three parts: Hilbert spaces and their (bounded and unbounded) self-adjoint operators, linear Hamiltonian systemsand their scalar counterparts and their application to orthogonal polynomials. In a sense, this is an updating of E. C. Titchmarsh's classic Eigenfunction Expansions. My interest in these areas began in 1960-61, when, as a graduate student, I was introduced by my advisors E. J. McShane and Marvin Rosenblum to the ideas of Hilbert space. The next year I was given a problem by Marvin Rosenblum that involved a differential operator with an "integral" boundary condition. That same year I attended a class given by the Physics Department in which the lecturer discussed the theory of Schwarz distributions and Titchmarsh's theory of singular Sturm-Liouville boundary value problems. I think a Professor Smith was the in structor, but memory fails. Nonetheless, I am deeply indebted to him, because, as we shall see, these topics are fundamental to what follows. I am also deeply indebted to others. First F. V. Atkinson stands as a giant in the field. W. N. Everitt does likewise. These two were very encouraging to me during my younger (and later) years. They did things "right." It was a revelation to read the book and papers by Professor Atkinson and the many fine fundamen tal papers by Professor Everitt. They are held in highest esteem, and are given profound thanks.