Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems

Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems

Author: Carlos E. Kenig

Publisher: American Mathematical Soc.

Published: 1994

Total Pages: 162

ISBN-13: 0821803093

DOWNLOAD EBOOK

In recent years, there has been a great deal of activity in the study of boundary value problems with minimal smoothness assumptions on the coefficients or on the boundary of the domain in question. These problems are of interest both because of their theoretical importance and the implications for applications, and they have turned out to have profound and fascinating connections with many areas of analysis. Techniques from harmonic analysis have proved to be extremely useful in these studies, both as concrete tools in establishing theorems and as models which suggest what kind of result might be true. Kenig describes these developments and connections for the study of classical boundary value problems on Lipschitz domains and for the corresponding problems for second order elliptic equations in divergence form. He also points out many interesting problems in this area which remain open.


Polyharmonic Boundary Value Problems

Polyharmonic Boundary Value Problems

Author: Filippo Gazzola

Publisher: Springer

Published: 2010-05-26

Total Pages: 444

ISBN-13: 3642122450

DOWNLOAD EBOOK

This accessible monograph covers higher order linear and nonlinear elliptic boundary value problems in bounded domains, mainly with the biharmonic or poly-harmonic operator as leading principal part. It provides rapid access to recent results and references.


Nonlinear Second Order Elliptic Equations Involving Measures

Nonlinear Second Order Elliptic Equations Involving Measures

Author: Moshe Marcus

Publisher: Walter de Gruyter

Published: 2013-11-27

Total Pages: 264

ISBN-13: 3110305313

DOWNLOAD EBOOK

In the last 40 years semi-linear elliptic equations became a central subject of study in the theory of nonlinear partial differential equations. On the one hand, the interest in this area is of a theoretical nature, due to its deep relations to other branches of mathematics, especially linear and nonlinear harmonic analysis, dynamical systems, differential geometry and probability. On the other hand, this study is of interest because of its applications. Equations of this type come up in various areas such as problems of physics and astrophysics, curvature problems in Riemannian geometry, logistic problems related for instance to population models and, most importantly, the study of branching processes and superdiffusions in the theory of probability. The aim of this book is to present a comprehensive study of boundary value problems for linear and semi-linear second order elliptic equations with measure data. We are particularly interested in semi-linear equations with absorption. The interactions between the diffusion operator and the absorption term give rise to a large class of nonlinear phenomena in the study of which singularities and boundary trace play a central role. This book is accessible to graduate students and researchers with a background in real analysis and partial differential equations.


Partial Differential Equations of Elliptic Type

Partial Differential Equations of Elliptic Type

Author: C. Miranda

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 384

ISBN-13: 3642877737

DOWNLOAD EBOOK

In the theory of partial differential equations, the study of elliptic equations occupies a preeminent position, both because of the importance which it assumes for various questions in mathematical physics, and because of the completeness of the results obtained up to the present time. In spite of this, even in the more classical treatises on analysis the theory of elliptic equations has been considered and illustrated only from particular points of view, while the only expositions of the whole theory, the extremely valuable ones by LICHTENSTEIN and AscoLI, have the charac ter of encyclopedia articles and date back to many years ago. Consequently it seemed to me that it would be of some interest to try to give an up-to-date picture of the present state of research in this area in a monograph which, without attaining the dimensions of a treatise, would nevertheless be sufficiently extensive to allow the expo sition, in some cases in summary form, of the various techniques used in the study of these equations.


Second Order Parabolic Differential Equations

Second Order Parabolic Differential Equations

Author: Gary M. Lieberman

Publisher: World Scientific

Published: 1996

Total Pages: 472

ISBN-13: 9789810228835

DOWNLOAD EBOOK

Introduction. Maximum principles. Introduction to the theory of weak solutions. Hölder estimates. Existence, uniqueness, and regularity of solutions. Further theory of weak solutions. Strong solutions. Fixed point theorems and their applications. Comparison and maximum principles. Boundary gradient estimates. Global and local gradient bounds. Hölder gradient estimates and existence theorems. The oblique derivative problem for quasilinear parabolic equations. Fully nonlinear equations. Introduction. Monge-Ampère and Hessian equations.


Boundary Value Problems For Second Order Elliptic Equations

Boundary Value Problems For Second Order Elliptic Equations

Author: A.V. Bitsadze

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 212

ISBN-13: 0323162266

DOWNLOAD EBOOK

Applied Mathematics and Mechanics, Volume 5: Boundary Value Problems: For Second Order Elliptic Equations is a revised and augmented version of a lecture course on non-Fredholm elliptic boundary value problems, delivered at the Novosibirsk State University in the academic year 1964-1965. This seven-chapter text is devoted to a study of the basic linear boundary value problems for linear second order partial differential equations, which satisfy the condition of uniform ellipticity. The opening chapter deals with the fundamental aspects of the linear equations theory in normed linear spaces. This topic is followed by discussions on solutions of elliptic equations and the formulation of Dirichlet problem for a second order elliptic equation. A chapter focuses on the solution equation for the directional derivative problem. Another chapter surveys the formulation of the Poincaré problem for second order elliptic systems in two independent variables. This chapter also examines the theory of one-dimensional singular integral equations that allow the investigation of highly important classes of boundary value problems. The final chapter looks into other classes of multidimensional singular integral equations and related boundary value problems.


Second Order Elliptic Equations and Elliptic Systems

Second Order Elliptic Equations and Elliptic Systems

Author: Ya-Zhe Chen

Publisher: American Mathematical Soc.

Published: 1998

Total Pages: 266

ISBN-13: 0821819240

DOWNLOAD EBOOK

There are two parts to the book. In the first part, a complete introduction of various kinds of a priori estimate methods for the Dirichlet problem of second order elliptic partial differential equations is presented. In the second part, the existence and regularity theories of the Dirichlet problem for linear and nonlinear second order elliptic partial differential systems are introduced. The book features appropriate materials and is an excellent textbook for graduate students. The volume is also useful as a reference source for undergraduate mathematics majors, graduate students, professors, and scientists.


Numerical Approximation Methods for Elliptic Boundary Value Problems

Numerical Approximation Methods for Elliptic Boundary Value Problems

Author: Olaf Steinbach

Publisher: Springer Science & Business Media

Published: 2007-12-22

Total Pages: 392

ISBN-13: 0387688056

DOWNLOAD EBOOK

This book presents a unified theory of the Finite Element Method and the Boundary Element Method for a numerical solution of second order elliptic boundary value problems. This includes the solvability, stability, and error analysis as well as efficient methods to solve the resulting linear systems. Applications are the potential equation, the system of linear elastostatics and the Stokes system. While there are textbooks on the finite element method, this is one of the first books on Theory of Boundary Element Methods. It is suitable for self study and exercises are included.