Advances in Hypersonics

Advances in Hypersonics

Author: BALLMAN

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 448

ISBN-13: 1461203791

DOWNLOAD EBOOK

These three volumes entitled Advances in Hypersonics contain the Proceedings of the Second and Third Joint US/Europe Short Course in Hypersonics which took place in Colorado Springs and Aachen. The Second Course was organized at the US Air Force Academy, USA in January 1989 and the Third Course at Aachen, Germany in October 1990. The main idea of these Courses was to present to chemists, com puter scientists, engineers, experimentalists, mathematicians, and physicists state of the art lectures in scientific and technical dis ciplines including mathematical modeling, computational methods, and experimental measurements necessary to define the aerothermo dynamic environments for space vehicles such as the US Orbiter or the European Hermes flying at hypersonic speeds. The subjects can be grouped into the following areas: Phys ical environments, configuration requirements, propulsion systems (including airbreathing systems), experimental methods for external and internal flow, theoretical and numerical methods. Since hyper sonic flight requires highly integrated systems, the Short Courses not only aimed to give in-depth analysis of hypersonic research and technology but also tried to broaden the view of attendees to give them the ability to understand the complex problem of hypersonic flight. Most of the participants in the Short Courses prepared a docu ment based on their presentation for reproduction in the three vol umes. Some authors spent considerable time and energy going well beyond their oral presentation to provide a quality assessment of the state of the art in their area of expertise as of 1989 and 1991.


Shock Wave-Boundary-Layer Interactions

Shock Wave-Boundary-Layer Interactions

Author: Holger Babinsky

Publisher: Cambridge University Press

Published: 2011-09-12

Total Pages: 481

ISBN-13: 1139498649

DOWNLOAD EBOOK

Shock wave-boundary-layer interaction (SBLI) is a fundamental phenomenon in gas dynamics that is observed in many practical situations, ranging from transonic aircraft wings to hypersonic vehicles and engines. SBLIs have the potential to pose serious problems in a flowfield; hence they often prove to be a critical - or even design limiting - issue for many aerospace applications. This is the first book devoted solely to a comprehensive, state-of-the-art explanation of this phenomenon. It includes a description of the basic fluid mechanics of SBLIs plus contributions from leading international experts who share their insight into their physics and the impact they have in practical flow situations. This book is for practitioners and graduate students in aerodynamics who wish to familiarize themselves with all aspects of SBLI flows. It is a valuable resource for specialists because it compiles experimental, computational and theoretical knowledge in one place.


Boundary Layer Transition at Supersonic Speeds

Boundary Layer Transition at Supersonic Speeds

Author: E. R. Van Driest

Publisher:

Published: 1961

Total Pages: 108

ISBN-13:

DOWNLOAD EBOOK

Experiments carried out in the 12-inch supersonic wind tunnel to investigate the effect of three dimensional roughness elements (spheres) on boundary-layer transition on a 10-degree (apex angle) cone without heat transfer are described. The local Mach number for these tests was 2.71. The data show clearly that the minimum (effective) size of trip required to bring transition to its lowest Reynolds number varies power of the distance from the apex of the cone to the trip. Use of available data at other Mach numbers indicates that the Mach number influence for effective tripping is taken into account by a simple expression. Some remarks concerning the roughness variation for transition on a blunt body are made. Finally, a general criterion is introduced which gives insight to the transition phenomenon and anticipates effects of external and internal disturbances, Mach number transfer.


Boundary Layer Flows

Boundary Layer Flows

Author: Vallampati Ramachandra Prasad

Publisher: BoD – Books on Demand

Published: 2020-01-22

Total Pages: 236

ISBN-13: 1839681853

DOWNLOAD EBOOK

Written by experts in the field, this book, "Boundary Layer Flows - Theory, Applications, and Numerical Methods" provides readers with the opportunity to explore its theoretical and experimental studies and their importance to the nonlinear theory of boundary layer flows, the theory of heat and mass transfer, and the dynamics of fluid. With the theory's importance for a wide variety of applications, applied mathematicians, scientists, and engineers - especially those in fluid dynamics - along with engineers of aeronautics, will undoubtedly welcome this authoritative, up-to-date book.


Simplified Method for Determination of Critical Height of Distributed Roughness for Boundary-layer Transition at Mach Numbers from 0 to 5

Simplified Method for Determination of Critical Height of Distributed Roughness for Boundary-layer Transition at Mach Numbers from 0 to 5

Author: Albert L. Braslow

Publisher:

Published: 1958

Total Pages: 624

ISBN-13:

DOWNLOAD EBOOK

The method has been applied to various types of configurations in several wind-tunnel investigations conducted by the National Advisory Committee for Aeronautics at Mach numbers up to 4, and in all cases the calculated roughness height caused premature boundary-layer transition for the range of test conditions.


Instability and Transition

Instability and Transition

Author: M.Y. Hussaini

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 509

ISBN-13: 1461234328

DOWNLOAD EBOOK

The ability to predict and control viscous flow phenomena is becoming increasingly important in modern industrial application. The Instability and Transition Workshop at Langley was extremely important in help§ ing the scientists community to access the state of knowledge in the area of transition from laminar to turbulent flow, to identify promising future areas of research and to build future interactions between researchers worldwide working in the areas of theoretical, experimental and computational fluid and aero dynamics. The set of two volume contains panel discussions and research contribution with the following objectives: (1) expose the academic community to current technologically important issues of instability and transitions in shear flows over the entire speed range, (2) acquaint the academic community with the unique combination of theoretical, computational and experimental capabilities at LaRC and foster interaction with these facilities. (3) review current state-of-the-art and propose future directions for instability and transition research, (4) accelerate progress in elucidating basic understanding of transition phenomena and in transferring this knowledge into improved design methodologies through improved transition modeling, and (5) establish mechanism for continued interaction.


Turbulence and Interactions

Turbulence and Interactions

Author: Michel Deville

Publisher: Springer Science & Business Media

Published: 2009-03-20

Total Pages: 166

ISBN-13: 3642002625

DOWNLOAD EBOOK

Contains seven keynote lectures of the TI 2006 conference that was held in Porquerolles, May 29-June 2, 2006. This book offers a view on theory, experiments and numerical simulations in the field of turbulence.


Progress in Propulsion Physics

Progress in Propulsion Physics

Author: Luigi T. DeLuca

Publisher:

Published: 2012

Total Pages: 570

ISBN-13: 9782759806744

DOWNLOAD EBOOK

La péface indique : "EUCASS (European Conference for Aero-Space Sciences) is a scientific association at the service of research scientists, engineers, and decision makers active in aeronautical and space sciences. EUCASS, which is an international nonprofit association under the Belgian law, addresses all topics of interest to aerospace, from research challenges to long-term programmes and prospective. It organizes regular conferences, workshops, and meetings. Its goal is to attract the best specialists from Europe and elsewhere, and to create a commonwealth of interest and challenges where in-formation and ideas circulate freely and swiftly, where the currently scattered European knowledge is exchanged much faster and cross-fertilised. EUCASS is the cradle that nurtures a friendly and lively community spirit among all players. It started its activities in 2005 by organizing the first-ever European conference in Moscow, followed at a biennial rate in Brussels and Versailles. In order to contribute to the dissemination of scientific knowledge, we have launched this EUCASS Book Series, the first and second volumes of which were dedicated to Propulsion Physics and presented a selection of the lectures given in Brussels in July 2007. EUCASS is organized in several permanent Technical Committees (TC). One of them is the Flight Physics TC. Within the broad EUCASS framework, the specificc purpose of the Flight Physics TC is to promote the technology, sciences, and arts of Flight physics and to help those engaged in these pursuits to develop their skills and those of their students. This third volume of the EUCASS Book Series on Advances in Aerospace Sciences is dedicated to Flight Physics. It comprises a selected collection of 43 papers presented at the 3rd European Conference for Aerospace Sciences held in Versailles, France, July 06-10, 2009. The current volume is the result of a long review process. About 1/3 of the total number of papers accepted for presentation at the conference was later selected by the volume editors, then edited by an international body of peer reviewers. The volume includes six chapters covering experimental, theoretical and numerical aspects of the fight physics: Chapter One Aerodynamics, Chapter Two Shock Interaction, Chapter Three High Enthalphy Flows, Chapter Four Heat Transfer, Chapter Five Aeroacoustics, Chapter Six Flow Control. To easily identify the material of interest, the reader is invited to consult the brief paper summaries compiled at the start of each chapter."


Convective Heat Transfer in Planetary Gases

Convective Heat Transfer in Planetary Gases

Author: Joseph G. Marvin

Publisher:

Published: 1965

Total Pages: 60

ISBN-13:

DOWNLOAD EBOOK

Equilibrium convective heat transfer in several real gases was investigated. The gases considered were air, nitrogen, hydrogen, carbon dioxide, and argon. Solutions to the similar form of the boundary-layer equations were obtained for flight velocities to 30,000 ft/sec for a range of parameters sufficient to define the effects of pressure level, pressure gradient, boundary-layer-edge velocity, and wall temperature. Results are presented for stagnation-point heating and for the heating-rate distribution. For the range of parameters investigated the wall heat transfer depended on the transport properties near the wall and precise evaluation of properties in the high-energy portions of the boundary layer was not needed. A correlation of the solutions to the boundary-layer equations was obtained which depended only on the low temperature properties of the gases. This result can be used to evaluate the heat transfer in gases other than those considered. The largest stagnation-point heat transfer at a constant flight velocity was obtained for argon followed successively by carbon dioxide, air, nitrogen, and hydrogen. The blunt-body heating-rate distribution was found to depend mainly on the inviscid flow field. For each gas, correlation equations of boundary-layer thermodynamic and transport properties as a function of enthalpy are given for a wide range of pressures to a maximum enthalpy of 18,000 Btu/lb.