The volume is divided into several parts, describing solid mechanics applications, dynamics and vibrations, fluid flow, acoustics, thermal problems, electrostatics, electromagnetics and numerical aspects. The book presents the state of the art of boundary element research with special emphasis on new applications and original research. As such it helps to point out the way ahead for boundary elements and the type of problems that are currently being investigated.
The finite element and the boundary element methods are the two most important developments in numerical mathematics to occur in this century. Many engineering and mathematics graduate curricula now include a course in boundary element methods. Such a course must cover numerical methods, basic methodology to real problems, and interactive computer usage. Both theory and applications, necessary for applied courses, are available in this new textbook. An Introduction to Boundary Element Methods is logically organized and easy to read. The topics are carefully selected and meticulously presented. Applications are described for use in identifying potential problems and for heat transfer, diffusion equations, linear elasticity, water waves, ocean acoustics, acoustic scattering, aerodynamics, porous media, and simple laminar flows. More than 20 computer subroutines help develop and explain the computational aspect of the subject. Hundreds of figures, exercises, and solved examples supplement text and help clarify important information. The computer programs have been tested on some benchmark problems. Even in single precision the results are more accurate and better than those obtained from available Fortran programs.
The boundary element method (BEM) is a modern numerical techniquewhich has enjoyed increasing popularity over the last two decades,and is now an established alternative to traditional computationalmethods of engineering analysis. The main advantage of the BEM isits unique ability to provide a complete solution in terms ofboundary values only, with substantial savings in modelling effort. This two-volume book set is designed to provide the readers with acomprehensive and up-to-date account of the boundary element methodand its application to solving engineering problems. Each volume isa self-contained book including a substantial amount of materialnot previously covered by other text books on the subject. Volume 1covers applications to heat transfer, acoustics, electrochemistryand fluid mechanics problems, while volume 2 concentrates on solidsand structures, describing applications to elasticity, plasticity,elastodynamics, fracture mechanics and contact analysis. The earlychapters are designed as a teaching text for final yearundergraduate courses. Both volumes reflect the experience of theauthors over a period of more than twenty years of boundary element research. This volume, Applications in Thermo-Fluids and Acoustics, provides acomprehensive presentation of the BEM from fundamentals to advancedengineering applications and encompasses: Steady and transient heat transfer Potential and viscous fluid flows Frequency and time-domain acoustics Corrosion and other electrochemical problems. A unique feature of this book is an in-depth presentation of BEMformulations in all the above fields, including detaileddiscussions of the basic theory, numerical algorithms and practicalengineering applications of the method. Written by an internationally recognised authority in the field,this is essential reading for postgraduates, researchers andpractitioners in civil, mechanical and chemical engineering andapplied mathematics.
Since its origin in 1978, the International Conference on Boundary Element Methods has provided the recognized and established forum for innovations in boundary element research. Practically all new ideas on boundary ele ments have been presented at these conferences and the resulting papers can be found in the published books. The conference brings together the most renowned scientists and engineers working on boundary element research throughout the world. A unique feature of these meetings is that the participation of younger researchers is actively encouraged by the organizers in an effort to .bring forward to the attention of the international community an ever expanding range of new ideas. This book contains the edited version of the papers presented at the XIIIth BEM Conference held in Tulsa, Oklahoma in August of 1991. The meeting attracted a large number of participants and many excellent contributions which have been divided into nineteen different sections, i.e. Potential Prob lems; Diffusion and Convection Problems; Fluid Mechanics; Fluid Flow; Wave Propagation; Groundwater Flow; Heat Transfer; Electrical Problems; Geomechanics; Plates and Shells; Inelastic Problems; Damage Tolerance; Contact Mechanics; Industrial Applications; Design Sensitivity and Opti mization; Inverse Problems; Special Techniques; Numerical Aspects and Computational Aspects.
The Boundary Element Methods (BEM) has become one of the most efficient tools for solving various kinds of problems in engineering science. The International Association for Boundary Element Methods (IABEM) was established in order to promote and facilitate the exchange of scientific ideas related to the theory and applications of boundary element methods. The aim of this symposium is to provide a forum for researchers in boundary element methods and boundary-integral formulations in general to present contemporary concepts and techniques leading to the advancement of capabilities and understanding of this com putational methodology. The topics covered in this symposium include mathematical and computational aspects, applications to solid mechanics, fluid mechanics, acoustics, electromagnetics, heat transfer, optimization, control, inverse problems and other interdisciplinary problems. Papers deal ing with the coupling of the boundary element method with other computational methods are also included. The editors hope that this volume presents some innovative techniques and useful knowl edge for the development of the boundary element methods. February, 1992 S. Kobayashi N. Nishimura Contents Abe, K.
This book focuses on the analysis of manufacturing processes and the integration of this analysis into the design cycle. Uniquely, the boundary element method (BEM) is the computational model of choice. This versatile and powerful method has undergone extensive development during the past two decades and has been applied to virtually all areas of engineering mechanics as well as to other fields. Among topics covered are BEM infrastructure, design sensitivity analysis, and detailed discussions of a broad range of manufacturing processes including forming, solidification, machining, and ceramic grinding.
The interest in finite element method as a solution technique of the computer age is reflected in the availability of many general and special purpose software based on this technique. This work aims to provide a complete and detailed explanation of the basics of the application areas.
Presents Boundary Element Method (BEM) in a simple fashion in order to help the beginner to understand the very basic principles of the method. This book initially derives BEM for the simplest potential problems, and subsequently builds on these to formulate BEM for a wide range of applications in electromagnetics.
The boundary element method (BEM), also known as the boundary integral equation method (BIEM), is a modern numerical technique. It is an established alternative to traditional computational methods of engineering analysis. This book provides a comprehensive account of the method and its application to problems in engineering and science.