Bosonic Strings: A Mathematical Treatment

Bosonic Strings: A Mathematical Treatment

Author: Jürgen Jost

Publisher: American Mathematical Soc.

Published: 2001

Total Pages: 110

ISBN-13: 0821843362

DOWNLOAD EBOOK

This book presents a mathematical treatment of Bosonic string theory from the point of view of global geometry. As motivation, Jost presents the theory of point particles and Feynman path integrals. He provides detailed background material, including the geometry of Teichmuller space, the conformal and complex geometry of Riemann surfaces, and the subtleties of boundary regularity questions. The high point is the description of the partition function for Bosonic strings as a finite-dimensional integral over a moduli space of Riemann surfaces. Jost concludes with some topics related to open and closed strings and $D$-branes. Bosonic Strings is suitable for graduate students and researchers interested in the mathematics underlying string theory.


Bosonic Strings

Bosonic Strings

Author: Jürgen Jost

Publisher: American Mathematical Society(RI)

Published: 2001

Total Pages: 0

ISBN-13: 9780821826447

DOWNLOAD EBOOK

Presented in this book is a mathematical treatment of Bosonic string theory from the point of view of global geometry. As motivation, the author presents the theory of point particles and Feynman path integrals. He considers the theory of strings as a quantization of the classical Plateau problem for minimal surfaces. The conformal variance of the relevant functional, the Polyakov action or (in mathematical terminology) the Dirichlet integral, leads to an anomaly in the process of quantization. The mathematical concepts needed to resolve this anomaly via the Faddeev-Popov method are introduced, specifically the geometry of the Teichmuuller and moduli spaces of Riemann surfaces and the corresponding function spaces. Other useful tools are the algebraic geometry of Riemann surfaces and infinite-dimensional determinants Also discussed are the boundary regularity questions. The main result is a presentation of the string partition function as an integral over a moduli space of Riemann surfaces.


String Theory and M-Theory

String Theory and M-Theory

Author: Katrin Becker

Publisher: Cambridge University Press

Published: 2006-12-07

Total Pages: 756

ISBN-13: 9780521860697

DOWNLOAD EBOOK

String theory is one of the most exciting and challenging areas of modern theoretical physics. This book guides the reader from the basics of string theory to recent developments. It introduces the basics of perturbative string theory, world-sheet supersymmetry, space-time supersymmetry, conformal field theory and the heterotic string, before describing modern developments, including D-branes, string dualities and M-theory. It then covers string geometry and flux compactifications, applications to cosmology and particle physics, black holes in string theory and M-theory, and the microscopic origin of black-hole entropy. It concludes with Matrix theory, the AdS/CFT duality and its generalizations. This book is ideal for graduate students and researchers in modern string theory, and will make an excellent textbook for a one-year course on string theory. It contains over 120 exercises with solutions, and over 200 homework problems with solutions available on a password protected website for lecturers at www.cambridge.org/9780521860697.


Strings and Geometry

Strings and Geometry

Author: Clay Mathematics Institute. Summer School

Publisher: American Mathematical Soc.

Published: 2004

Total Pages: 396

ISBN-13: 9780821837153

DOWNLOAD EBOOK

Contains selection of expository and research article by lecturers at the school. Highlights current interests of researchers working at the interface between string theory and algebraic supergravity, supersymmetry, D-branes, the McKay correspondence andFourer-Mukai transform.


Knots, Braids, and Mapping Class Groups -- Papers Dedicated to Joan S. Birman

Knots, Braids, and Mapping Class Groups -- Papers Dedicated to Joan S. Birman

Author: Jane Gilman

Publisher: American Mathematical Soc.

Published: 2001

Total Pages: 200

ISBN-13: 0821829661

DOWNLOAD EBOOK

There are a number of specialties in low-dimensional topology that can find in their ``family tree'' a common ancestry in the theory of surface mappings. These include knot theory as studied through the use of braid representations, and 3-manifolds as studied through the use of Heegaard splittings. The study of the surface mapping class group (the modular group) is of course a rich subject in its own right, with relations to many different fields of mathematics and theoreticalphysics. However, its most direct and remarkable manifestation is probably in the vast area of low-dimensional topology. Although the scene of this area has been changed dramatically and experienced significant expansion since the original publication of Professor Joan Birman's seminal work,Braids, Links,and Mapping Class Groups(Princeton University Press), she brought together mathematicians whose research span many specialties, all of common lineage. The topics covered are quite diverse. Yet they reflect well the aim and spirit of the conference: to explore how these various specialties in low-dimensional topology have diverged in the past 20-25 years, as well as to explore common threads and potential future directions of development. This volume is dedicated to Joan Birman by hercolleagues with deep admiration and appreciation of her contribution to low-dimensional topology.


Wavelet Analysis and Applications

Wavelet Analysis and Applications

Author: Dong-Gao Deng

Publisher: American Mathematical Soc.

Published: 2002

Total Pages: 344

ISBN-13: 0821829912

DOWNLOAD EBOOK

Wavelet analysis has been one of the major research directions in science in the last decade. More and more mathematicians and scientists join this exciting research area. Certainly, wavelet analysis has had a great impact in areas such as approximation theory, harmonic analysis, and scientific computation. More importantly, wavelet analysis has shown great potential in applications to information technology such as signal processing, image processing, and computer graphics. Chinahas played a significant role in this development of wavelet analysis as evidenced by many fruitful theoretical results and practical applications. A conference on wavelet analysis and its applications was organized to exchange ideas and results with international research groups at ZhongshanUniversity (Guangzhou, China). This volume contains the proceedings from that conference. Comprised here are selected papers from the conference, covering a wide range of research topics of current interest. Many significant results are included in the study of refinement equations and refinable functions, properties and construction of wavelets, spline wavelets, multi-wavelets, wavelet packets, shift-invariant spaces, approximation schemes and subdivision algorithms, and tilings. Severalpapers also focus on applications of wavelets to numerical solutions of partial differential equations and integral equations, image processing and facial recognition, computer vision, and feature extraction from data.


Lectures on Chaotic Dynamical Systems

Lectures on Chaotic Dynamical Systems

Author: Valentin Senderovich Afraĭmovich

Publisher: American Mathematical Soc.

Published: 2003

Total Pages: 367

ISBN-13: 0821831682

DOWNLOAD EBOOK

Basic concepts Zero-dimensional dynamics One-dimensional dynamics Two-dimensional dynamics Systems with 1.5 degrees of freedom Systems generated by three-dimensional vector fields Lyapunov exponents Appendix Bibliography Index.


Mirror Symmetry IV

Mirror Symmetry IV

Author: Eric D'Hoker

Publisher: American Mathematical Soc.

Published: 2002

Total Pages: 394

ISBN-13: 0821833359

DOWNLOAD EBOOK

This book presents contributions of participants of a workshop held at the Centre de Recherches Mathematiques (CRM), University of Montreal. It can be viewed as a sequel to Mirror Symmetry I (1998), Mirror Symmetry II (1996), and Mirror Symmetry III (1999), copublished by the AMS and International Press. The volume presents a broad survey of many of the noteworthy developments that have taken place in string theory, geometry, and duality since the mid 1990s. Some of the topics emphasized include the following: Integrable models and supersymmetric gauge theories; theory of M- and D-branes and noncommutative geometry; duality between strings and gauge theories; and elliptic genera and automorphic forms. Several introductory articles present an overview of the geometric and physical aspects of mirror symmetry and of corresponding developments in symplectic geometry. The book provides an efficient way for a very broad audience of mathematicians and physicists to explore the frontiers of research into this rapidly expanding area.


Compact Riemann Surfaces

Compact Riemann Surfaces

Author: Jürgen Jost

Publisher: Springer Science & Business Media

Published: 2006-12-13

Total Pages: 293

ISBN-13: 3540330674

DOWNLOAD EBOOK

This book is novel in its broad perspective on Riemann surfaces: the text systematically explores the connection with other fields of mathematics. The book can serve as an introduction to contemporary mathematics as a whole, as it develops background material from algebraic topology, differential geometry, the calculus of variations, elliptic PDE, and algebraic geometry. The book is unique among textbooks on Riemann surfaces in its inclusion of an introduction to Teichmüller theory. For this new edition, the author has expanded and rewritten several sections to include additional material and to improve the presentation.


Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity

Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity

Author: Weimin Han

Publisher: American Mathematical Soc.

Published: 2002

Total Pages: 464

ISBN-13: 0821831925

DOWNLOAD EBOOK

Índice: Function spaces and their properties; Introduction to finite difference and finite element approximations; Variational inequalities; Constitutive relations in solid mechanics; Background on variational and numerical analysis in contact mechanics; Contact problems in elasticity; Bilateral contact with slip dependent friction; Frictional contact with normal compliance; Frictional contact with normal damped response; Other viscoelastic contact problems; Frictionless contact with dissipative potential; Frictionless contact between two viscoplastic bodies; Bilateral contact with Tresca's friction law; Other viscoelastic contact problems; Bibliography; Index.