Bond-Orientational Order in Condensed Matter Systems

Bond-Orientational Order in Condensed Matter Systems

Author: Katherine J. Strandburg

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 401

ISBN-13: 1461228123

DOWNLOAD EBOOK

One of the most important aspects of solid materials is the regularity of the arrangement of the constituent molecules, that is, the long-range order. The focus of this book is on the contribution made by the ordering of bond orientations (as distinguished from the orientations of the molecules themselves) on the behavior of condensed systems, particularly their phase transitions. Examples in which bond-orientational effects play an important role are liquid crystals, quasicrystals, and two-dimensional crystals. This book contains contributions by many of the foremost researchers in the field. The chapters are tutorial reviews of the subject, written both for the active researcher looking for a review of a topic and for the graduate student investigating an exciting area of research. The contributions include an overview by J.D. Brock, Cornell; a discussion of computer simulation studies by K.J. Strandburg, Argonne; chapters on phase transition in hexatic liquid crystals by C.C. Huang, Minnesota and C.A. Murray, Texas A&M; and chapters on quasicrystals by S. Sachdev, Yale, M.V. Jaric, A.I. Goldman, Iowa State, and T.-L. Ho, Ohio State.


Bond-Orientational Order in Condensed Matter Systems

Bond-Orientational Order in Condensed Matter Systems

Author: Katherine J. Strandburg

Publisher: Springer

Published: 2011-11-09

Total Pages: 388

ISBN-13: 9781461228134

DOWNLOAD EBOOK

One of the most important aspects of solid materials is the regularity of the arrangement of the constituent molecules, that is, the long-range order. The focus of this book is on the contribution made by the ordering of bond orientations (as distinguished from the orientations of the molecules themselves) on the behavior of condensed systems, particularly their phase transitions. Examples in which bond-orientational effects play an important role are liquid crystals, quasicrystals, and two-dimensional crystals. This book contains contributions by many of the foremost researchers in the field. The chapters are tutorial reviews of the subject, written both for the active researcher looking for a review of a topic and for the graduate student investigating an exciting area of research. The contributions include an overview by J.D. Brock, Cornell; a discussion of computer simulation studies by K.J. Strandburg, Argonne; chapters on phase transition in hexatic liquid crystals by C.C. Huang, Minnesota and C.A. Murray, Texas A&M; and chapters on quasicrystals by S. Sachdev, Yale, M.V. Jaric, A.I. Goldman, Iowa State, and T.-L. Ho, Ohio State.


Ordering in Strongly Fluctuating Condensed Matter Systems

Ordering in Strongly Fluctuating Condensed Matter Systems

Author: Tormod Riste

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 474

ISBN-13: 1468436260

DOWNLOAD EBOOK

This NATO Advanced Study Institute held at Gei10, Norway, April 16th-27th 1979, was the fifth in a series devoted to the subject of phase transitions and instabilities. The application to NATO for the funding of this ASI contained the following para graphs: "Traditionally one has made a clear distinction between solids and liquids in terms of positional order, one being long-ranged and the other at most short-ranged. In recent years experiments have revealed a much more faceted picture and a less sharp distinction between solids and liquids. As an example one now has 3-dimensiona1 (3-D) liquids with 1-D density waves and 3-D solids with 1-D-1iquid molecular chains. The subsystems have the common feature of 10w dimensional systems: a strong tendency for fluctuations to appear. Although the connection between fluctuations and dimensionality, and the suppression of long-range order by fluctuations, was pointed out as early as 1935 by Peier1s and by Landau, it is in the last five years or so that theoretical work has gained momentum. This development of understanding started ten years ago, however, much inspired by the experimental work on 2-D spin systems.


Condensed Matter Theories

Condensed Matter Theories

Author: S. Fantoni

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 446

ISBN-13: 1461536863

DOWNLOAD EBOOK

The XIV International Workshop on Condensed Matter Theories has been held at the Elba International Physics Center (EIPC), Marciana Marina, Isola d'Elba, Italy, from 18-23 June, 1990. The Workshop started in 1977 in Sao Paolo, Brazil, as the 1st Pan American Workshop on Condensed Matter Theories, with the purpose of bringing together scientists from the Western countries, working in many different topics of Condensed Matter Theories, to facilitate exchanges of ideas and technologies from different areas as well as collaborations among the scientists. The next five Workshops were held at Trieste, Italy (1978), in Buenos Aires, Argentina ( 1979), in Caracas, Venezuela (1980), in Mexico City, Mexico (1981) and in St. Louis, Missouri, U. S. A. (1982). Given the international dimension reached by the Workshop, it was decided to extend it into an International Workshop, which was held for the first time in Altenberg, Germany (1983). The next editions took place in Granada, Spain (1984), San Francisco, California, U. S. A. (1985), Argonne, Illinois, U. S. A. (1986), Oulu, Finland (1987), Taxco, Mexico (1988) and Campos do Jordao, Brasil (1989). Many scientists have contributed to the development of the various editions of the Work shop. However, a particular mention has to be made to Profs. Manuel de Llano and Angel Plastino who initially proposed the Workshop and carried it forward, and to Prof. J . W. Clark, whose efforts have been of immense help to its recent developments.


Soft Matter Physics

Soft Matter Physics

Author: Maurice Kleman

Publisher: Springer Science & Business Media

Published: 2007-05-28

Total Pages: 659

ISBN-13: 0387217592

DOWNLOAD EBOOK

The study of "soft matter" materials with complex properties has raised a number of interesting problems in basic physics, biology, and materials science, all of which promise new and important technological applications. After a review of chemical bonds and phase transitions, the authors treat topics such as surface phenomena, stability of colloidal systems, structural properties of polymers, and topological defects. The monograph's emphasis on underlying physical principles offers a coherent treatment of the great variety of research in the field.


The Monte Carlo Method in Condensed Matter Physics

The Monte Carlo Method in Condensed Matter Physics

Author: Kurt Binder

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 406

ISBN-13: 3662028557

DOWNLOAD EBOOK

The Monte Carlo method is now widely used and commonly accepted as an important and useful tool in solid state physics and related fields. It is broadly recognized that the technique of "computer simulation" is complementary to both analytical theory and experiment, and can significantly contribute to ad vancing the understanding of various scientific problems. Widespread applications of the Monte Carlo method to various fields of the statistical mechanics of condensed matter physics have already been reviewed in two previously published books, namely Monte Carlo Methods in Statistical Physics (Topics Curro Phys. , Vol. 7, 1st edn. 1979, 2ndedn. 1986) and Applications of the Monte Carlo Method in Statistical Physics (Topics Curro Phys. , Vol. 36, 1st edn. 1984, 2nd edn. 1987). Meanwhile the field has continued its rapid growth and expansion, and applications to new fields have appeared that were not treated at all in the above two books (e. g. studies of irreversible growth phenomena, cellular automata, interfaces, and quantum problems on lattices). Also, new methodic aspects have emerged, such as aspects of efficient use of vector com puters or parallel computers, more efficient analysis of simulated systems con figurations, and methods to reduce critical slowing down at i>hase transitions. Taken together with the extensive activity in certain traditional areas of research (simulation of classical and quantum fluids, of macromolecular materials, of spin glasses and quadrupolar glasses, etc.


Active Matter and Nonequilibrium Statistical Physics

Active Matter and Nonequilibrium Statistical Physics

Author: Julien Tailleur

Publisher: Oxford University Press

Published: 2022-10-21

Total Pages: 673

ISBN-13: 0192858319

DOWNLOAD EBOOK

From molecular motors to bacteria, from crawling cells to large animals, active entities are found at all scales in the biological world. Active matter encompasses systems whose individual constituents irreversibly dissipate energy to exert self-propelling forces on their environment. Over the past twenty years, scientists have managed to engineer synthetic active particles in the lab, paving the way towards smart active materials. This book gathers a pedagogical set of lecture notes that cover topics in nonequilibrium statistical mechanics and active matter. These lecture notes stem from the first summer school on Active Matter delivered at the Les Houches school of Physics. The lectures covered four main research directions: collective behaviours in active-matter systems, passive and active colloidal systems, biophysics and active matter, and nonequilibrium statistical physics--from passive to active.


Complex Fluids in Biological Systems

Complex Fluids in Biological Systems

Author: Saverio E. Spagnolie

Publisher: Springer

Published: 2014-11-27

Total Pages: 449

ISBN-13: 1493920650

DOWNLOAD EBOOK

This book serves as an introduction to the continuum mechanics and mathematical modeling of complex fluids in living systems. The form and function of living systems are intimately tied to the nature of surrounding fluid environments, which commonly exhibit nonlinear and history dependent responses to forces and displacements. With ever-increasing capabilities in the visualization and manipulation of biological systems, research on the fundamental phenomena, models, measurements, and analysis of complex fluids has taken a number of exciting directions. In this book, many of the world’s foremost experts explore key topics such as: Macro- and micro-rheological techniques for measuring the material properties of complex biofluids and the subtleties of data interpretation Experimental observations and rheology of complex biological materials, including mucus, cell membranes, the cytoskeleton, and blood The motility of microorganisms in complex fluids and the dynamics of active suspensions Challenges and solutions in the numerical simulation of biologically relevant complex fluid flows This volume will be accessible to advanced undergraduate and beginning graduate students in engineering, mathematics, biology, and the physical sciences, but will appeal to anyone interested in the intricate and beautiful nature of complex fluids in the context of living systems.