Body Sensor Networking, Design and Algorithms

Body Sensor Networking, Design and Algorithms

Author: Saeid Sanei

Publisher: John Wiley & Sons

Published: 2020-07-13

Total Pages: 417

ISBN-13: 1119390028

DOWNLOAD EBOOK

A complete guide to the state of the art theoretical and manufacturing developments of body sensor network, design, and algorithms In Body Sensor Networking, Design, and Algorithms, professionals in the field of Biomedical Engineering and e-health get an in-depth look at advancements, changes, and developments. When it comes to advances in the industry, the text looks at cooperative networks, noninvasive and implantable sensor microelectronics, wireless sensor networks, platforms, and optimization—to name a few. Each chapter provides essential information needed to understand the current landscape of technology and mechanical developments. It covers subjects including Physiological Sensors, Sleep Stage Classification, Contactless Monitoring, and much more. Among the many topics covered, the text also includes additions such as: ● Over 120 figures, charts, and tables to assist with the understanding of complex topics ● Design examples and detailed experimental works ● A companion website featuring MATLAB and selected data sets Additionally, readers will learn about wearable and implantable devices, invasive and noninvasive monitoring, biocompatibility, and the tools and platforms for long-term, low-power deployment of wireless communications. It’s an essential resource for understanding the applications and practical implementation of BSN when it comes to elderly care, how to manage patients with chronic illnesses and diseases, and use cases for rehabilitation.


Body Sensor Networking, Design and Algorithms

Body Sensor Networking, Design and Algorithms

Author: Saeid Sanei

Publisher: John Wiley & Sons

Published: 2020-04-28

Total Pages: 416

ISBN-13: 1119390044

DOWNLOAD EBOOK

A complete guide to the state of the art theoretical and manufacturing developments of body sensor network, design, and algorithms In Body Sensor Networking, Design, and Algorithms, professionals in the field of Biomedical Engineering and e-health get an in-depth look at advancements, changes, and developments. When it comes to advances in the industry, the text looks at cooperative networks, noninvasive and implantable sensor microelectronics, wireless sensor networks, platforms, and optimization—to name a few. Each chapter provides essential information needed to understand the current landscape of technology and mechanical developments. It covers subjects including Physiological Sensors, Sleep Stage Classification, Contactless Monitoring, and much more. Among the many topics covered, the text also includes additions such as: ● Over 120 figures, charts, and tables to assist with the understanding of complex topics ● Design examples and detailed experimental works ● A companion website featuring MATLAB and selected data sets Additionally, readers will learn about wearable and implantable devices, invasive and noninvasive monitoring, biocompatibility, and the tools and platforms for long-term, low-power deployment of wireless communications. It’s an essential resource for understanding the applications and practical implementation of BSN when it comes to elderly care, how to manage patients with chronic illnesses and diseases, and use cases for rehabilitation.


Body Sensor Networks

Body Sensor Networks

Author: Guang-Zhong Yang

Publisher: Springer Science & Business Media

Published: 2007-12-05

Total Pages: 507

ISBN-13: 1846284848

DOWNLOAD EBOOK

This book addresses the issues of the rapidly changing field of wireless wearable and implantable sensors. It also discusses the latest technological developments and clinical applications of body-sensor networks (BSN). BSN is a new area of research and the last decade has seen a rapid surge of interest. The book also provides a review of current wireless sensor development platforms and a guide to developing your own BSN applications.


Energy-Efficient Algorithms and Protocols for Wireless Body Sensor Networks

Energy-Efficient Algorithms and Protocols for Wireless Body Sensor Networks

Author: Rongrong Zhang

Publisher: Springer Nature

Published: 2019-08-28

Total Pages: 134

ISBN-13: 3030285804

DOWNLOAD EBOOK

This book provides a systematic treatment of the theoretical foundation and algorithmic tools necessary in the design of energy-efficient algorithms and protocols in wireless body sensor networks (WBSNs). These problems addressed in the book are of both fundamental and practical importance. Specifically, the book delivers a comprehensive treatment on the following problems ranging from theoretical modeling and analysis, to practical algorithm design and optimization: energy-efficient clustering-based leader election algorithms in WBSNs; MAC protocol for duty-cycling WBSNs with concurrent traffic; multi-channel broadcast algorithms in duty-cycling WBSNs; and energy-efficient sleep scheduling algorithms in WBSNs. Target readers of the book are researchers and advanced-level engineering students interested in acquiring in-depth knowledge on the topic and on WBSNs and their applications, both from theoretical and engineering perspective.


Body Sensor Networks

Body Sensor Networks

Author: Guang-Zhong Yang

Publisher: Springer

Published: 2006-05-15

Total Pages: 494

ISBN-13: 9781846282720

DOWNLOAD EBOOK

This book addresses the issues of the rapidly changing field of wireless wearable and implantable sensors. It also discusses the latest technological developments and clinical applications of body-sensor networks (BSN). BSN is a new area of research and the last decade has seen a rapid surge of interest. The book also provides a review of current wireless sensor development platforms and a guide to developing your own BSN applications.


Wireless Body-to-body Sensor Networks

Wireless Body-to-body Sensor Networks

Author: Amira Meharouech Ali

Publisher:

Published: 2016

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Motivated by the rising demand for remote and improved healthcare, while decreasing the cost of using network infrastructures to ensure time and data rate-constrained applications, Wireless Body Area Networks (WBANs) still form a strongly growing research field. Besides, engineers and researchers are investigating new solutions to supplement mobile communications through developing opportunities for cooperative WBANs. In this context, using network users themselves as relays could complement and extend existing infrastructure networks, while improving network capacity and promoting radio spectrum usage. Yet, network operators, that are already planning for the Internet of Things (IoT) and cloud computing technologies integration, should also think about this new possibility of creating a new type of mobile ad hoc network, where network users themselves are used as simplified ad hoc base stations, to fulfill the desire of sharing real-time information between colocated persons carrying body sensors. This emerging type of network is called Body-to-Body Network (BBN). In a BBN, a radio device situated on one person gathers the sensor data from the sensor nodes worn by that person, and transmit them to a transceiver situated on another person in the nearby area, in order to be processed or relayed to other BBN users. BBNs can find applications in a range of areas such as healthcare, team sports, military, entertainment, as well as exciting social networking experiences. Operating in the popular Industrial, Scientific and Medical (ISM) band, the communication links in a BBN will be heavily susceptible to interference between the different radio technologies sharing the limited radio spectrum. Thus, inter-body interference become an important concern for protocol design and quality of service for the BBN end user. Yet, higher layer MAC and networking mechanisms need to be in place to overcome this interference problem. To date, very few studies, that perform in-depth analysis of this type of body-centric scenario, exist. The interference problem in such distributed system, should be tackeled with distributed mechanisms, such as Game Theory. The decision makers in the game are either the WBANs/people forming the BBN or the network operators who control the inter-WBAN communicating devices. These devices have to cope with a limited transmission resource (ISM band) that gives rise to a conflict of interests. This thesis aims at exploring the opportunities to enable inter-WBAN communications by ensuring feasible sharing of the radio spectrum through two challenging research issues. First, mutual and cross-technology interference mitigation, and second, the design of a BBN specific routing protocol applied to an epidemic control application within mass gathering areas, such as the airport, as use case in this thesis. In a first phase, a game theoretical approach is proposed to resolve the distributed interference problem in BBNs. The Socially-aware Interference Mitigation (SIM) game performs twofold: at the WBAN stage, it allocates ZigBee channels to body sensors for intra-WBAN data sensing, and at the BBN stage, it allocates WiFi channels to mobile devices for inter-WBAN data transmitting and relaying. Two algorithms, BR-SIM and SORT-SIM, were developed to search for Nash equilibra to the SIM game. The first (BR-SIM) ensures best response solutions while the second (SORT-SIM) attempts to achieve tradeoff between sub-optimal solutions and short convergence time. Then, in order to highlight the social role of BBNs, the second part of this thesis is devoted to propose an epidemic control application tailored to BBNs, in indoor environment. This application implements a geographic routing protocol, that differentiates WBANs traffic and ensures real-time quarantine strategies. (...).


Wearable Computing

Wearable Computing

Author: Giancarlo Fortino

Publisher: John Wiley & Sons

Published: 2018-05-08

Total Pages: 256

ISBN-13: 1118864573

DOWNLOAD EBOOK

This book provides the most up-to-date research and development on wearable computing, wireless body sensor networks, wearable systems integrated with mobile computing, wireless networking and cloud computing This book has a specific focus on advanced methods for programming Body Sensor Networks (BSNs) based on the reference SPINE project. It features an on-line website (http://spine.deis.unical.it) to support readers in developing their own BSN application/systems and covers new emerging topics on BSNs such as collaborative BSNs, BSN design methods, autonomic BSNs, integration of BSNs and pervasive environments, and integration of BSNs with cloud computing. The book provides a description of real BSN prototypes with the possibility to see on-line demos and download the software to test them on specific sensor platforms and includes case studies for more practical applications. • Provides a future roadmap by learning advanced technology and open research issues • Gathers the background knowledge to tackle key problems, for which solutions will enhance the evolution of next-generation wearable systems • References the SPINE web site (http://spine.deis.unical.it) that accompanies the text • Includes SPINE case studies and span topics like human activity recognition, rehabilitation of elbow/knee, handshake detection, emotion recognition systems Wearable Systems and Body Sensor Networks: from modeling to implementation is a great reference for systems architects, practitioners, and product developers. Giancarlo Fortino is currently an Associate Professor of Computer Engineering (since 2006) at the Department of Electronics, Informatics and Systems (DEIS) of the University of Calabria (Unical), Rende (CS), Italy. He was recently nominated Guest Professor in Computer Engineering of Wuhan University of Technology on April, 18 2012 (the term of appointment is three years). His research interests include distributed computing and networks, wireless sensor networks, wireless body sensor networks, agent systems, agent oriented software engineering, streaming content distribution networks, distributed multimedia systems, GRID computing. Raffaele Gravina received the B.Sc. and M.S. degrees both in computer engineering from the University of Calabria, Rende, Italy, in 2004 and 2007, respectively. Here he also received the Ph.D. degree in computer engineering. He's now a Postdoctoral research fellow at University of Calabria. His research interests are focused on high-level programming methods for WSNs, specifically Wireless Body Sensor Networks. He wrote almost 30 scientific/technical articles in the area of the proposed Book. He is co-founder of SenSysCal S.r.l., a spin-off company of the University of Calabria, and CTO of the wearable computing area of the company. Stefano Galzarano received the B.S. and M.S. degrees both in computer engineering from the University of Calabria, Rende, Italy, in 2006 and 2009, respectively. He is currently pursuing a joint Ph.D. degree in computer engineering with University of Calabria and Technical University of Eindhoven (The Netherlands). His research interests are focused on high-level programming methods for wireless sensor networks and, specifically, novel methods and frameworks for autonomic wireless body sensor networks.


Sensor Technology: Concepts, Methodologies, Tools, and Applications

Sensor Technology: Concepts, Methodologies, Tools, and Applications

Author: Management Association, Information Resources

Publisher: IGI Global

Published: 2020-02-07

Total Pages: 1618

ISBN-13: 1799824551

DOWNLOAD EBOOK

Collecting and processing data is a necessary aspect of living in a technologically advanced society. Whether it’s monitoring events, controlling different variables, or using decision-making applications, it is important to have a system that is both inexpensive and capable of coping with high amounts of data. As the application of these networks becomes more common, it becomes imperative to evaluate their effectiveness as well as other opportunities for possible implementation in the future. Sensor Technology: Concepts, Methodologies, Tools, and Applications is a vital reference source that brings together new ways to process and monitor data and to put it to work in everything from intelligent transportation systems to healthcare to multimedia applications. It also provides inclusive coverage on the processing and applications of wireless communication, sensor networks, and mobile computing. Highlighting a range of topics such as internet of things, signal processing hardware, and wireless sensor technologies, this multi-volume book is ideally designed for research and development engineers, IT specialists, developers, graduate students, academics, and researchers.


Biologically Inspired Algorithms for Wireless Sensor Networks

Biologically Inspired Algorithms for Wireless Sensor Networks

Author: Roberto Pagliari

Publisher:

Published: 2010

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

In recent years, several models introduced in mathematical biology and natural science have been used as the foundation of networking primitives. These bioinspired algorithms often solve complex problems by means of simple and iterative local rules. In this work, we consider the design and development of novel decentralized algorithms for distributed systems, with applications to wireless sensor networks, wireless body area networks and formation control. We consider two models of interaction. In one model, nodes communicate via pulses whose arrival time is sensed and compared to a local state variable and triggers an appropriate local update. In the second model, the nodes can exchange integer valued messages, which we call colors. The first class of algorithms falls in the class of Pulse-Coupled Oscillator (PCO) models that were first introduced in mathematical biology and that have been recently introduced in the sensor networking area. This thesis is concerned with the design and analysis of PCO based protocols for synchronization and multiple access. The second class of protocols relates to the so called voting models introduced in Physics. The protocol was proposed for network control in particularly harsh media, where communications are severely limited by the significant distortion and delay of the link.


Advances in Body Area Networks I

Advances in Body Area Networks I

Author: Giancarlo Fortino

Publisher: Springer

Published: 2018-12-29

Total Pages: 481

ISBN-13: 3030028194

DOWNLOAD EBOOK

This book presents the post-proceedings, including all revised versions of the accepted papers, of the 2017 European Alliance for Innovation (EAI) International Conference on Body Area Networks (BodyNets 2017). The goal of BodyNets 2017 was to provide a world-leading and unique forum, bringing together researchers and practitioners from diverse disciplines to plan, analyze, design, build, deploy and experiment with/on Body Area Networks (BANs).