Bivariate Discrete Distributions

Bivariate Discrete Distributions

Author: Kocherlakota

Publisher: CRC Press

Published: 1992-05-18

Total Pages: 392

ISBN-13: 9780824787028

DOWNLOAD EBOOK

This book provides a comprehensive study of the bivariate discrete distributions and details the computer simulation techniques for the distributions. It develops distributions using sampling schemes, explores the role of compounding, and covers Waring distribution for use in accident theory.


Bivariate Discrete Distributions

Bivariate Discrete Distributions

Author: Kocherlakota

Publisher: Routledge

Published: 2017-11-22

Total Pages: 392

ISBN-13: 1351463454

DOWNLOAD EBOOK

This useful reference/text provides a comprehensive study of the various bivariate discretedistributions that have appeared in the literature- written in an accessible manner thatassumes no more than a first course in mathematical statistics.Supplying individualized treatment of topics while simultaneously exploiting the interrelationshipsof the material, Bivariate Discrete Distributions details the latest techniques ofcomputer simulation for the distributions considered ... contains a general introduction tothe structural properties of discrete distributions, including generating functions, momentrelationships, and the basic ideas of generalizing . . . develops distributions using samplingschemes . .. explores the role of compounding ... covers Waring and "short" distributionsfor use in accident theory ... discusses problems of statistical inference, emphasizing techniquespertinent to the discrete case ... and much more!Containing over 1000 helpful equations, Bivariate Discrete Distributions is


Continuous Bivariate Distributions

Continuous Bivariate Distributions

Author: N. Balakrishnan

Publisher: Springer Science & Business Media

Published: 2009-05-31

Total Pages: 714

ISBN-13: 0387096140

DOWNLOAD EBOOK

Along with a review of general developments relating to bivariate distributions, this volume also covers copulas, a subject which has grown immensely in recent years. In addition, it examines conditionally specified distributions and skewed distributions.


Probability And Statistics For Economists

Probability And Statistics For Economists

Author: Yongmiao Hong

Publisher: World Scientific Publishing Company

Published: 2017-11-02

Total Pages: 592

ISBN-13: 9813228830

DOWNLOAD EBOOK

Probability and Statistics have been widely used in various fields of science, including economics. Like advanced calculus and linear algebra, probability and statistics are indispensable mathematical tools in economics. Statistical inference in economics, namely econometric analysis, plays a crucial methodological role in modern economics, particularly in empirical studies in economics.This textbook covers probability theory and statistical theory in a coherent framework that will be useful in graduate studies in economics, statistics and related fields. As a most important feature, this textbook emphasizes intuition, explanations and applications of probability and statistics from an economic perspective.


Discrete q-Distributions

Discrete q-Distributions

Author: Charalambos A. Charalambides

Publisher: John Wiley & Sons

Published: 2016-03-16

Total Pages: 264

ISBN-13: 1119119057

DOWNLOAD EBOOK

A self-contained study of the various applications and developments of discrete distribution theory Written by a well-known researcher in the field, Discrete q-Distributions features an organized presentation of discrete q-distributions based on the stochastic model of a sequence of independent Bernoulli trials. In an effort to keep the book self-contained, the author covers all of the necessary basic q-sequences and q-functions. The book begins with an introduction of the notions of a q-power, a q-factorial, and a q-binomial coefficient and proceeds to discuss the basic q-combinatorics and q-hypergeometric series. Next, the book addresses discrete q-distributions with success probability at a trial varying geometrically, with rate q, either with the number of previous trials or with the number of previous successes. Further, the book examines two interesting stochastic models with success probability at any trial varying geometrically both with the number of trials and the number of successes and presents local and global limit theorems. Discrete q-Distributions also features: Discussions of the definitions and theorems that highlight key concepts and results Several worked examples that illustrate the applications of the presented theory Numerous exercises at varying levels of difficulty that consolidate the concepts and results as well as complement, extend, or generalize the results Detailed hints and answers to all the exercises in an appendix to help less-experienced readers gain a better understanding of the content An up-to-date bibliography that includes the latest trends and advances in the field and provides a collective source for further research An Instructor’s Solutions Manual available on a companion website A unique reference for researchers and practitioners in statistics, mathematics, physics, engineering, and other applied sciences, Discrete q-Distributions is also an appropriate textbook for graduate-level courses in discrete statistical distributions, distribution theory, and combinatorics.


Probability and Bayesian Modeling

Probability and Bayesian Modeling

Author: Jim Albert

Publisher: CRC Press

Published: 2019-12-06

Total Pages: 553

ISBN-13: 1351030132

DOWNLOAD EBOOK

Probability and Bayesian Modeling is an introduction to probability and Bayesian thinking for undergraduate students with a calculus background. The first part of the book provides a broad view of probability including foundations, conditional probability, discrete and continuous distributions, and joint distributions. Statistical inference is presented completely from a Bayesian perspective. The text introduces inference and prediction for a single proportion and a single mean from Normal sampling. After fundamentals of Markov Chain Monte Carlo algorithms are introduced, Bayesian inference is described for hierarchical and regression models including logistic regression. The book presents several case studies motivated by some historical Bayesian studies and the authors’ research. This text reflects modern Bayesian statistical practice. Simulation is introduced in all the probability chapters and extensively used in the Bayesian material to simulate from the posterior and predictive distributions. One chapter describes the basic tenets of Metropolis and Gibbs sampling algorithms; however several chapters introduce the fundamentals of Bayesian inference for conjugate priors to deepen understanding. Strategies for constructing prior distributions are described in situations when one has substantial prior information and for cases where one has weak prior knowledge. One chapter introduces hierarchical Bayesian modeling as a practical way of combining data from different groups. There is an extensive discussion of Bayesian regression models including the construction of informative priors, inference about functions of the parameters of interest, prediction, and model selection. The text uses JAGS (Just Another Gibbs Sampler) as a general-purpose computational method for simulating from posterior distributions for a variety of Bayesian models. An R package ProbBayes is available containing all of the book datasets and special functions for illustrating concepts from the book. A complete solutions manual is available for instructors who adopt the book in the Additional Resources section.


Computational Finance and Financial Econometrics

Computational Finance and Financial Econometrics

Author: Eric Zivot

Publisher: CRC Press

Published: 2017-01-15

Total Pages: 500

ISBN-13: 9781498775779

DOWNLOAD EBOOK

This book presents mathematical, programming and statistical tools used in the real world analysis and modeling of financial data. The tools are used to model asset returns, measure risk, and construct optimized portfolios using the open source R programming language and Microsoft Excel. The author explains how to build probability models for asset returns, to apply statistical techniques to evaluate if asset returns are normally distributed, to use Monte Carlo simulation and bootstrapping techniques to evaluate statistical models, and to use optimization methods to construct efficient portfolios.


Probability Distributions Used in Reliability Engineering

Probability Distributions Used in Reliability Engineering

Author: Andrew N O'Connor

Publisher: RIAC

Published: 2011

Total Pages: 220

ISBN-13: 1933904062

DOWNLOAD EBOOK

The book provides details on 22 probability distributions. Each distribution section provides a graphical visualization and formulas for distribution parameters, along with distribution formulas. Common statistics such as moments and percentile formulas are followed by likelihood functions and in many cases the derivation of maximum likelihood estimates. Bayesian non-informative and conjugate priors are provided followed by a discussion on the distribution characteristics and applications in reliability engineering.


Statistical Distributions

Statistical Distributions

Author: Nick T. Thomopoulos

Publisher: Springer

Published: 2017-10-10

Total Pages: 176

ISBN-13: 3319651129

DOWNLOAD EBOOK

This book gives a description of the group of statistical distributions that have ample application to studies in statistics and probability. Understanding statistical distributions is fundamental for researchers in almost all disciplines. The informed researcher will select the statistical distribution that best fits the data in the study at hand. Some of the distributions are well known to the general researcher and are in use in a wide variety of ways. Other useful distributions are less understood and are not in common use. The book describes when and how to apply each of the distributions in research studies, with a goal to identify the distribution that best applies to the study. The distributions are for continuous, discrete, and bivariate random variables. In most studies, the parameter values are not known a priori, and sample data is needed to estimate parameter values. In other scenarios, no sample data is available, and the researcher seeks some insight that allows the estimate of the parameter values to be gained. This handbook of statistical distributions provides a working knowledge of applying common and uncommon statistical distributions in research studies. These nineteen distributions are: continuous uniform, exponential, Erlang, gamma, beta, Weibull, normal, lognormal, left-truncated normal, right-truncated normal, triangular, discrete uniform, binomial, geometric, Pascal, Poisson, hyper-geometric, bivariate normal, and bivariate lognormal. Some are from continuous data and others are from discrete and bivariate data. This group of statistical distributions has ample application to studies in statistics and probability and practical use in real situations. Additionally, this book explains computing the cumulative probability of each distribution and estimating the parameter values either with sample data or without sample data. Examples are provided throughout to guide the reader. Accuracy in choosing and applying statistical distributions is particularly imperative for anyone who does statistical and probability analysis, including management scientists, market researchers, engineers, mathematicians, physicists, chemists, economists, social science researchers, and students in many disciplines.


A Primer on Statistical Distributions

A Primer on Statistical Distributions

Author: Narayanaswamy Balakrishnan

Publisher: John Wiley & Sons

Published: 2004-12-04

Total Pages: 322

ISBN-13: 0471722219

DOWNLOAD EBOOK

Designed as an introduction to statistical distribution theory. * Includes a first chapter on basic notations and definitions that are essential to working with distributions. * Remaining chapters are divided into three parts: Discrete Distributions, Continuous Distributions, and Multivariate Distributions. * Exercises are incorporated throughout the text in order to enhance understanding of materials just taught.