Bitopological Spaces: Theory, Relations with Generalized Algebraic Structures and Applications

Bitopological Spaces: Theory, Relations with Generalized Algebraic Structures and Applications

Author: Badri Dvalishvili

Publisher: Elsevier

Published: 2005-01-20

Total Pages: 430

ISBN-13: 0080459463

DOWNLOAD EBOOK

This monograph is the first and an initial introduction to the theory of bitopological spaces and its applications. In particular, different families of subsets of bitopological spaces are introduced and various relations between two topologies are analyzed on one and the same set; the theory of dimension of bitopological spaces and the theory of Baire bitopological spaces are constructed, and various classes of mappings of bitopological spaces are studied. The previously known results as well the results obtained in this monograph are applied in analysis, potential theory, general topology, and theory of ordered topological spaces. Moreover, a high level of modern knowledge of bitopological spaces theory has made it possible to introduce and study algebra of new type, the corresponding representation of which brings one to the special class of bitopological spaces. It is beyond any doubt that in the nearest future the areas of essential applications will be the theories of linear topological spaces and topological groups, algebraic and differential topologies, the homotopy theory, not to mention other fundamental areas of modern mathematics such as geometry, mathematical logic, the probability theory and many other areas, including those of applied nature. Key Features:- First monograph is "Generalized Lattices"* The first introduction to the theory of bitopological spaces and its applications.


Theory and Applications of Fractional Differential Equations

Theory and Applications of Fractional Differential Equations

Author: A.A. Kilbas

Publisher: Elsevier

Published: 2006-02-16

Total Pages: 550

ISBN-13: 9780444518323

DOWNLOAD EBOOK

This work aims to present, in a systematic manner, results including the existence and uniqueness of solutions for the Cauchy Type and Cauchy problems involving nonlinear ordinary fractional differential equations.


Functional Analysis in Asymmetric Normed Spaces

Functional Analysis in Asymmetric Normed Spaces

Author: Stefan Cobzas

Publisher: Springer Science & Business Media

Published: 2012-10-30

Total Pages: 229

ISBN-13: 3034804784

DOWNLOAD EBOOK

An asymmetric norm is a positive definite sublinear functional p on a real vector space X. The topology generated by the asymmetric norm p is translation invariant so that the addition is continuous, but the asymmetry of the norm implies that the multiplication by scalars is continuous only when restricted to non-negative entries in the first argument. The asymmetric dual of X, meaning the set of all real-valued upper semi-continuous linear functionals on X, is merely a convex cone in the vector space of all linear functionals on X. In spite of these differences, many results from classical functional analysis have their counterparts in the asymmetric case, by taking care of the interplay between the asymmetric norm p and its conjugate. Among the positive results one can mention: Hahn–Banach type theorems and separation results for convex sets, Krein–Milman type theorems, analogs of the fundamental principles – open mapping, closed graph and uniform boundedness theorems – an analog of the Schauder’s theorem on the compactness of the conjugate mapping. Applications are given to best approximation problems and, as relevant examples, one considers normed lattices equipped with asymmetric norms and spaces of semi-Lipschitz functions on quasi-metric spaces. Since the basic topological tools come from quasi-metric spaces and quasi-uniform spaces, the first chapter of the book contains a detailed presentation of some basic results from the theory of these spaces. The focus is on results which are most used in functional analysis – completeness, compactness and Baire category – which drastically differ from those in metric or uniform spaces. The book is fairly self-contained, the prerequisites being the acquaintance with the basic results in topology and functional analysis, so it may be used for an introduction to the subject. Since new results, in the focus of current research, are also included, researchers in the area can use it as a reference text.


Transactions on Rough Sets XIII

Transactions on Rough Sets XIII

Author:

Publisher: Springer Science & Business Media

Published: 2011-01-14

Total Pages: 284

ISBN-13: 3642183018

DOWNLOAD EBOOK

The LNCS journal Transactions on Rough Sets is devoted to the entire spectrum of rough sets related issues, from logical and mathematical foundations, through all aspects of rough set theory and its applications, such as data mining, knowledge discovery, and intelligent information processing, to relations between rough sets and other approaches to uncertainty, vagueness, and incompleteness, such as fuzzy sets and theory of evidence. Volume XIII contains 14 papers which introduce a number of new advances in both the foundations and the applications of rough sets. These are mathematical structures of generalized rough sets in infinite universes, approximations of arbitrary binary relations, and attribute reduction in decision-theoretic rough sets. Methodological advances introduce rough set-based and hybrid methodologies for learning theory, attribution reduction, decision analysis, risk assessment, and data mining tasks such as classification and clustering. In addition, this volume contains regular articles on mining temporal software metrics data, C-GAME discretization method, perceptual tolerance intersection as an example of a near set operation and compression of spatial data with quadtree structures.


Topological Groups and Related Structures, An Introduction to Topological Algebra.

Topological Groups and Related Structures, An Introduction to Topological Algebra.

Author: Alexander Arhangel’skii

Publisher: Springer Science & Business Media

Published: 2008-05-01

Total Pages: 794

ISBN-13: 949121635X

DOWNLOAD EBOOK

Algebraandtopology,thetwofundamentaldomainsofmathematics,playcomplem- tary roles. Topology studies continuity and convergence and provides a general framework to study the concept of a limit. Much of topology is devoted to handling in?nite sets and in?nity itself; the methods developed are qualitative and, in a certain sense, irrational. - gebra studies all kinds of operations and provides a basis for algorithms and calculations. Very often, the methods here are ?nitistic in nature. Because of this difference in nature, algebra and topology have a strong tendency to develop independently, not in direct contact with each other. However, in applications, in higher level domains of mathematics, such as functional analysis, dynamical systems, representation theory, and others, topology and algebra come in contact most naturally. Many of the most important objects of mathematics represent a blend of algebraic and of topologicalstructures. Topologicalfunctionspacesandlineartopologicalspacesingeneral, topological groups and topological ?elds, transformation groups, topological lattices are objects of this kind. Very often an algebraic structure and a topology come naturally together; this is the case when they are both determined by the nature of the elements of the set considered (a group of transformations is a typical example). The rules that describe the relationship between a topology and an algebraic operation are almost always transparentandnatural—theoperationhastobecontinuous,jointlyorseparately.


A Mathematical Theory of Design: Foundations, Algorithms and Applications

A Mathematical Theory of Design: Foundations, Algorithms and Applications

Author: D. Braha

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 684

ISBN-13: 1475728727

DOWNLOAD EBOOK

Formal Design Theory (PDT) is a mathematical theory of design. The main goal of PDT is to develop a domain independent core model of the design process. The book focuses the reader's attention on the process by which ideas originate and are developed into workable products. In developing PDT, we have been striving toward what has been expressed by the distinguished scholar Simon (1969): that "the science of design is possible and some day we will be able to talk in terms of well-established theories and practices. " The book is divided into five interrelated parts. The conceptual approach is presented first (Part I); followed by the theoretical foundations of PDT (Part II), and from which the algorithmic and pragmatic implications are deduced (Part III). Finally, detailed case-studies illustrate the theory and the methods of the design process (Part IV), and additional practical considerations are evaluated (Part V). The generic nature of the concepts, theory and methods are validated by examples from a variety of disciplines. FDT explores issues such as: algebraic representation of design artifacts, idealized design process cycle, and computational analysis and measurement of design process complexity and quality. FDT's axioms convey the assumptions of the theory about the nature of artifacts, and potential modifications of the artifacts in achieving desired goals or functionality. By being able to state these axioms explicitly, it is possible to derive theorems and corollaries, as well as to develop specific analytical and constructive methodologies.


Many Valued Topology and its Applications

Many Valued Topology and its Applications

Author: Ulrich Höhle

Publisher: Springer Science & Business Media

Published: 2011-06-28

Total Pages: 377

ISBN-13: 146151617X

DOWNLOAD EBOOK

The 20th Century brought the rise of General Topology. It arose from the effort to establish a solid base for Analysis and it is intimately related to the success of set theory. Many Valued Topology and Its Applications seeks to extend the field by taking the monadic axioms of general topology seriously and continuing the theory of topological spaces as topological space objects within an almost completely ordered monad in a given base category C. The richness of this theory is shown by the fundamental fact that the category of topological space objects in a complete and cocomplete (epi, extremal mono)-category C is topological over C in the sense of J. Adamek, H. Herrlich, and G.E. Strecker. Moreover, a careful, categorical study of the most important topological notions and concepts is given - e.g., density, closedness of extremal subobjects, Hausdorff's separation axiom, regularity, and compactness. An interpretation of these structures, not only by the ordinary filter monad, but also by many valued filter monads, underlines the richness of the explained theory and gives rise to new concrete concepts of topological spaces - so-called many valued topological spaces. Hence, many valued topological spaces play a significant role in various fields of mathematics - e.g., in the theory of locales, convergence spaces, stochastic processes, and smooth Borel probability measures. In its first part, the book develops the necessary categorical basis for general topology. In the second part, the previously given categorical concepts are applied to monadic settings determined by many valued filter monads. The third part comprises various applications of many valued topologies to probability theory and statistics as well as to non-classical model theory. These applications illustrate the significance of many valued topology for further research work in these important fields.