Biopolymer-Based Nanomaterials in Drug Delivery and Biomedical Applications
Author: Hriday Bera
Publisher: Academic Press
Published: 2021-01-28
Total Pages: 628
ISBN-13: 0128208740
DOWNLOAD EBOOKOver the past few decades, there has been unprecedented progress in the design of versatile biopolymer-based nanoplatforms for pharmaceutical and biomedical applications, particularly due to their attractive traits, including excellent biocompatibility, outstanding biodegradability, low immunogenicity, and facile chemical modifiability. Biopolymer-Based Nanomaterials in Drug Delivery and Biomedical Applications serves as a clear and detailed body of information on the synthesis and characterization of biopolymer-based materials in nanomedicine. This book describes various nanomaterials consisting of biopolymers including polysaccharides (i.e., derived from plants, animals, bacteria, algae, and fungi) and polypeptides in terms of their structures, synthetic protocols, and characterization and uses as therapeutic drugs and gene delivery carriers and in other biomedical fields. The chapters of this book, which are contributed by internationally renowned scholars working in the arena of biopolymer-based nanomaterials, would offer a wide vision on the potential future applications of these nanomaterials in the delivery and targeting of bioactive molecules of pharmaceutical interests and in tissue engineering, biosensing, bioimaging, and diagnostic purposes. The state-of-the-art information presented in the book would also encourage young investigators and researchers to further bring cutting-edge developments in the field of nanomedicine in the near future. Provides a scholarly insight into the recent development of biopolymer-based nanomaterials Focuses on the diverse cutting-edge techniques for the fabrication of native and modified biopolymer-based nanoplatforms and their applications in drug delivery and biomedical fields Assesses the opportunities and challenges of biopolymer-based nanocarriers in pharmaceutical and biomedical research