This new volume is devoted to molecular chemistry and its applications to the fields of biology. It looks at the integration of molecular chemistry with biomolecular engineering, with the goal of creating new biological or physical properties to address scientific or societal challenges. It takes a both multidisciplinary and interdisciplinary perspective on the interface between molecular biology, biophysical chemistry, and chemical engineering. Molecular Chemistry and Biomolecular Engineering: Integrating Theory and Research with Practice provides effective support for the development of the laboratory and data analysis skills that researchers will draw on time and again for the practical aspects and also gives a solid grounding in the broader transferable skills.
This comprehensive work discusses novel biomolecular surfaces that have been engineered to either control or measure cell function at the atomic, molecular, and cellular levels. Each chapter presents real results, concepts, and expert perspectives of how cells interact with biomolecular surfaces, with particular emphasis on interactions within complex mechanical environments such as in the cardiovascular system. In addition, the book provides detailed coverage of inflammation and cellular immune response as a useful model for how engineering concepts and tools may be effectively applied to complex systems in biomedicine.-Accessible to biologists looking for new ways to model their results and engineers interested in biomedical applications -Useful to researchers in biomaterials, inflammation, and vascular biology -Excellent resource for graduate students as a textbook in cell & tissue engineering or cell mechanics courses
For freshman and limited calculus-based courses in Introduction to Biomedical Engineering or Introduction to Bioengineering. Substantial yet reader-friendly, this introduction examines the living system from the molecular to the human scale-presenting bioengineering practice via some of the best engineering designs provided by nature, from a variety of perspectives. Domach makes the field more accessible for students, helping them to pick up the jargon and determine where their skill sets may fit in. He covers such key issues as optimization, scaling, and design; and introduces these concepts in a sequential, layered manner. Analysis strategies, science, and technology are illustrated in each chapter.
The scope of opportunities in chemical and biomolecular engineering has grown tremendously in recent years. Careers in Chemical and Biomolecular Engineering conveys the breadth and depth of today’s chemical and biomolecular engineering practice, and describes the intellectually enriching, socially conscious and financially lucrative opportunities available for such graduates in an ever-widening array of industries and applications. This book aims to help students interested in studying chemical engineering and biomolecular engineering to understand the many potential career pathways that are available in these dynamic fields — and is an indispensable resource for the parents, teachers, advisors and guidance counselors who support them, In addition to 10 chapters that discuss the roles such graduates play in many diverse industries, this book also features 25 Profile articles that share in-depth, first-person insight from industry-leading chemical and biomolecular engineers. These technical professionals discuss their work and educational experiences (in terms of both triumphs and challenges), and share wisdom and recommendations for students pursuing these two dynamic engineering disciplines.
Discover biomolecular engineering technologies for the production of biofuels, pharmaceuticals, organic and amino acids, vitamins, biopolymers, surfactants, detergents, and enzymes In Biomolecular Engineering Solutions for Renewable Specialty Chemicals, distinguished researchers and editors Drs. R. Navanietha Krishnaraj and Rajesh K. Sani deliver a collection of insightful resources on advanced technologies in the synthesis and purification of value-added compounds. Readers will discover new technologies that assist in the commercialization of the production of value-added products. The editors also include resources that offer strategies for overcoming current limitations in biochemical synthesis, including purification. The articles within cover topics like the rewiring of anaerobic microbial processes for methane and hythane production, the extremophilic bioprocessing of wastes to biofuels, reverse methanogenesis of methane to biopolymers and value-added products, and more. The book presents advanced concepts and biomolecular engineering technologies for the production of high-value, low-volume products, like therapeutic molecules, and describes methods for improving microbes and enzymes using protein engineering, metabolic engineering, and systems biology approaches for converting wastes. Readers will also discover: A thorough introduction to engineered microorganisms for the production of biocommodities and microbial production of vanillin from ferulic acid Explorations of antibiotic trends in microbial therapy, including current approaches and future prospects, as well as fermentation strategies in the food and beverage industry Practical discussions of bioactive oligosaccharides, including their production, characterization, and applications In-depth treatments of biopolymers, including a retrospective analysis in the facets of biomedical engineering Perfect for researchers and practicing professionals in the areas of environmental and industrial biotechnology, biomedicine, and the biological sciences, Biomolecular Engineering Solutions for Renewable Specialty Chemicals is also an invaluable resource for students taking courses involving biorefineries, biovalorization, industrial biotechnology, and environmental biotechnology.
The second edition of this popular introductory undergraduate textbook uses examples, applications, and profiles of biomedical engineers to show students the relevance of the theory and how it can be used to solve real problems in human medicine. The essential molecular biology, cellular biology, and human physiology background is included for students to understand the context in which biomedical engineers work. Updates throughout highlight important advances made over recent years, including iPS cells, microRNA, nanomedicine, imaging technology, biosensors, and drug delivery systems, giving students a modern description of the various subfields of biomedical engineering. Over two hundred quantitative and qualitative exercises, many new to this edition, help consolidate learning, whilst a solutions manual, password-protected for instructors, is available online. Finally, students can enjoy an expanded set of leader profiles in biomedical engineering within the book, showcasing the broad range of career paths open to students who make biomedical engineering their calling.
The book deals with engineering aspects of the two emerging and intertwined fields of synthetic and systems biology. Both fields hold promise to revolutionize the way molecular biology research is done, the way today’s drug discovery works and the way bio-engineering is done. Both fields stress the importance of building and characterizing small bio-molecular networks in order to synthesize incrementally and understand large complex networks inside living cells. Reminiscent of computer-aided design (CAD) of electronic circuits, abstraction is believed to be the key concept to achieve this goal. It allows hiding the overwhelming complexity of cellular processes by encapsulating network parts into abstract modules. This book provides a unique perspective on how concepts and methods from CAD of electronic circuits can be leveraged to overcome complexity barrier perceived in synthetic and systems biology.
The term ‘biomedical engineering’ refers to the application of the principles and problem-solving techniques of engineering to biology and medicine. Biomedical engineering is an interdisciplinary branch, as many of the problems health professionals are confronted with have traditionally been of interest to engineers because they involve processes that are fundamental to engineering practice. Biomedical engineers employ common engineering methods to comprehend, modify, or control biological systems, and to design and manufacture devices that can assist in the diagnosis and therapy of human diseases. This Special Issue of Fluids aims to be a forum for scientists and engineers from academia and industry to present and discuss recent developments in the field of biomedical engineering. It contains papers that tackle, both numerically (Computational Fluid Dynamics studies) and experimentally, biomedical engineering problems, with a diverse range of studies focusing on the fundamental understanding of fluid flows in biological systems, modelling studies on complex rheological phenomena and molecular dynamics, design and improvement of lab-on-a-chip devices, modelling of processes inside the human body as well as drug delivery applications. Contributions have focused on problems associated with subjects that include hemodynamical flows, arterial wall shear stress, targeted drug delivery, FSI/CFD and Multiphysics simulations, molecular dynamics modelling and physiology-based biokinetic models.
This book presents cutting-edge research and developments in the field of biomedical engineering, with a special emphasis on results achieved in Vietnam and neighboring low- and middle-income countries. Covering both fundamental and applied research, and focusing on the theme of “Translational Healthcare Technology from Advanced to Low and Middle Income Countries in the Era of Covid and Digital Transformation”, it reports on the design, fabrication, and application of low-cost and portable medical devices, biosensors, and microfluidic devices, on improved methods for biological data acquisition and analysis, on nanoparticles for biological applications, and on new achievements in biomechanics, tissue engineering, and regeneration. It describes the developments of molecular and cellular biology techniques, neuroengineering techniques, and statistical and computational methods, including artificial intelligence, for biomedical applications. It also discusses strategies to address some relevant issues in biomedical education and entrepreneurship. Gathering the proceedings of the 9th International Conference on The Development of Biomedical Engineering in Vietnam, BME 9, held on December 27-29, 2022, in Ho Chi Minh, Vietnam, the book offers important answers to current challenges in the field and a source of inspiration for scientists, engineers, and researchers with various backgrounds working in different research institutes, companies, and countries.