This monograph assembles expert knowledge on the latest biomechanical modeling and testing of hard tissues, coupled with a concise introduction to the structural and physical properties of bone and cartilage. A strong focus lies on the current advances in understanding bone structure and function from a materials science perspective, providing practical knowledge on how to model, simulate and predict the mechanical behavior of bone. The book presents directly applicable methods for designing and testing the performance of artificial bones and joint replacements, while addressing innovative and safe approaches to stimulated bone regeneration essential for clinical researchers.
Cowin (New York Center for Biomedical Engineering) and Humphrey (biomedical engineering, Texas A&M U.) present seven papers that discuss current research and future directions. Topics concern tissues within the cardiovascular system (arteries, the heart, and biaxial testing of planar tissues such as heart valves). Themes include an emphasis on data on the underlying microstructure, especially collagen; the consideration of the fact that both arteries and the heart contain muscle and that there is, therefore, a need to quantify both the active and passive response; constitutive relations for active behavior; and the growth and remodeling of cardiovascular tissues. Of interest to cardiovascular and biomechanics soft tissue researchers, and bioengineers. Annotation copyrighted by Book News, Inc., Portland, OR.
The emerging paradigm of incorporating images and biomechanical properties of soft tissues has proven to be an integral part of the advancement of several medical applications, including image guided radiotherapy and surgery, brachytherapy, and diagnostics. This expansion has resulted in a growing community of medical, science, and engineering professionals applying mechanical principles to address medical concerns. This book is tailored to cover a range of mechanical principles, properties, and applications of soft tissues that have previously been addressed in various journals and "anatomical site-specific" books. Biomechanics of Soft Tissues follows a different approach by offering a simplified overview of widely used mechanical models and measuring techniques of soft tissue parameters. This is followed by an investigation of different medical applications, including: biomechanical aspects of cancerous tumor progressions, radiotherapy treatment, and image guided ultrasound guided interventions. Written by leading scholars and professionals in the field, Biomechanics of Soft Tissues combines engineering and medical expertise, thereby producing an excellent source of information for professionals interested in the theoretical and technological advancements related to soft tissues. The book provides medical professionals with an insight on various modeling approaches, testing techniques, and mechanical characteristics that are frequently used by engineers. Conversely, the presented medical applications provide engineers with a glimpse of amazing medical practices and encourage them to expand their roles in the medical field. Provides a simplified overview of mechanics of soft tissues. Highlights different techniques to measure tissues properties for engineering and medical applications. Contains novel ideas to address roles of mechanics in disease progression and treatment. Presents innovative applications of biomechanics in medical procedures.
Richly illustrated throughout with actual tissue images, this innovative book shows that the soft-hard tissue junction is best understood in a biomechanical context. The authors describe their pioneering experimental methods, providing an essential structure-function framework for computational modelling, and thereby encouraging the development of more realistic, predictive models of this important tissue junction. Covering the three main musculoskeletal junctions of cartilage-bone, disc-vertebra, and ligament/tendon-bone, the relevant soft tissues are examined with respect to both their own inherent structure and their mode of integration with the hard tissue. The soft-hard tissue interface is explored with a focus on structural damage resulting from overloading, and its associated pathologies. Adopting a multiscale approach, ranging in structural resolution from the macro to fibril levels, this is a must-have guide to the field and an ideal resource for researchers seeking new and creative approaches for studying the joint and spine tissues.
Multiscale Biomechanics provides new insights on multiscale static and dynamic behavior of both soft and hard biological tissues, including bone, the intervertebral disk, biological membranes and tendons. The physiological aspects of bones and biological membranes are introduced, along with micromechanical models used to compute mechanical response. A modern account of continuum mechanics of growth and remodeling, generalized continuum models to capture internal lengths scales, and dedicated homogenization methods are provided to help the reader with the necessary theoretical foundations. Topics discussed include multiscale methods for fibrous media based on discrete homogenization, generalized continua constitutive models for bone, and a presentation of recent theoretical and numerical advances. In addition, a refresher on continuum mechanics and more advanced background related to differential geometry, configurational mechanics, mechanics of growth, thermodynamics of open systems and homogenization methods is given in separate chapters. Numerical aspects are treated in detail, and simulations are presented to illustrate models. This book is intended for graduate students and researchers in biomechanics interested in the latest research developments, as well as those who wish to gain insight into the field of biomechanics. - Provides a clear exposition of multiscale methods for fibrous media based on discrete homogenization and the consideration of generalized continua constitutive models for bone - Presents recent theoretical and numerical advances for bone remodeling and growth - Includes the necessary theoretical background that is exposed in a clear and self-contained manner - Covers continuum mechanics and more advanced background related to differential geometry, configurational mechanics, mechanics of growth, thermodynamics of open systems and homogenization methods
Extensively revised from a successful first edition, this book features a wealth of clear illustrations, numerous worked examples, and many problem sets. It provides the quantitative perspective missing from more descriptive texts, without requiring an advanced background in mathematics, and as such will be welcomed for use in courses such as biomechanics and orthopedics, rehabilitation and industrial engineering, and occupational or sports medicine.
The structures of living tissues are continually changing due to growth and response to the tissue environment, including the mechanical environment. Tissue Mechanics is an in-depth look at the mechanics of tissues. Tissue Mechanics describes the nature of the composite components of a tissue, the cellular processes that produce these constituents, the assembly of the constituents into a hierarchical structure, and the behavior of the tissue’s composite structure in the adaptation to its mechanical environment. Organized as a textbook for the student needing to acquire the core competencies, Tissue Mechanics will meet the demands of advanced undergraduate or graduate coursework in Biomedical Engineering, as well as, Chemical, Civil, and Mechanical Engineering. Key features: Detailed Illustrations Example problems, including problems at the end of sections A separate solutions manual available for course instructors A website (http://tissue-mechanics.com/) that has been established to provide supplemental material for the book, including downloadable additional chapters on specific tissues, downloadable PowerPoint presentations of all the book's chapters, and additional exercises and examples for the existing chapters. About the Authors: Stephen C. Cowin is a City University of New York Distinguished Professor, Departments of Biomedical and Mechanical Engineering, City College of the City University of New York and also an Adjunct Professor of Orthopaedics, at the Mt. Sinai School of Medicine in New York, New York. In 1985 he received the Society of Tulane Engineers and Lee H. Johnson Award for Teaching Excellence and a recipient of the European Society of Biomechanics Research Award in 1994. In 1999 he received the H. R. Lissner medal of the ASME for contributions to biomedical engineering. In 2004 he was elected to the National Academy of Engineering (NAE) and he also received the Maurice A. Biot medal of the American Society of Civil Engineers (ASCE). Stephen B. Doty is a Senior Scientist at Hospital for Special Surgery, New York, New York and Adjunct Professor, School of Dental and Oral Surgery, Columbia University, New York, NY. He has over 100 publications in the field of anatomy, developmental biology, and the physiology of skeletal and connective tissues. His honors include several commendations for participation in the Russian/NASA spaceflights, the Spacelab Life Science NASA spaceflights, and numerous Shuttle missions that studied the influence of spaceflight on skeletal physiology. He presently is on the scientific advisory board of the National Space Biomedical Research Institute, Houston, Texas.
Every year workers' low-back, hand, and arm problems lead to time away from jobs and reduce the nation's economic productivity. The connection of these problems to workplace activities-from carrying boxes to lifting patients to pounding computer keyboards-is the subject of major disagreements among workers, employers, advocacy groups, and researchers. Musculoskeletal Disorders and the Workplace examines the scientific basis for connecting musculoskeletal disorders with the workplace, considering people, job tasks, and work environments. A multidisciplinary panel draws conclusions about the likelihood of causal links and the effectiveness of various intervention strategies. The panel also offers recommendations for what actions can be considered on the basis of current information and for closing information gaps. This book presents the latest information on the prevalence, incidence, and costs of musculoskeletal disorders and identifies factors that influence injury reporting. It reviews the broad scope of evidence: epidemiological studies of physical and psychosocial variables, basic biology, biomechanics, and physical and behavioral responses to stress. Given the magnitude of the problem-approximately 1 million people miss some work each year-and the current trends in workplace practices, this volume will be a must for advocates for workplace health, policy makers, employers, employees, medical professionals, engineers, lawyers, and labor officials.
A research project entitled Biomechanics of Structure and Function of Living Cells, Tissues, and Organs was launched in Japan in 1992. This data book presents the original, up-to-date information resulting from the research project, supplemented by some of the important basic data published previously. The aim of collecting the information is to offer accurate and useful data on the mechanical properties of living materials to biomechanical scientists, biomedical engineers, medical scientists, and clinicians. The data are presented in graphs and tables (one type of data per page) arranged in an easily accessible manner, along with details of the origin of the material and the experimental method. Together with its two companion volumes, Biomechanics: Functional Adaptation and Remodeling and Computational Biomechanics, the Data Book on Mechanical Properties of Living Cells, Tissues, and Organs is a timely and valuable contribution to the rapidly growing field of biomechanics.
The motivation for writing aseries ofbooks on biomechanics is to bring this rapidly developing subject to students of bioengineering, physiology, and mechanics. In the last decade biomechanics has become a recognized disci pline offered in virtually all universities. Yet there is no adequate textbook for instruction; neither is there a treatise with sufficiently broad coverage. A few books bearing the title of biomechanics are too elementary, others are too specialized. I have long feIt a need for a set of books that will inform students of the physiological and medical applications of biomechanics, and at the same time develop their training in mechanics. We cannot assume that all students come to biomechanics already fully trained in fluid and solid mechanics; their knowledge in these subjects has to be developed as the course proceeds. The scheme adopted in the present series is as follows. First, some basic training in mechanics, to a level about equivalent to the first seven chapters of the author's A First Course in Continuum Mechanics (Prentice-Hall,lnc. 1977), is assumed. We then present some essential parts of biomechanics from the point of view of bioengineering, physiology, and medical applications. In the meantime, mechanics is developed through a sequence of problems and examples. The main text reads like physiology, while the exercises are planned like a mechanics textbook. The instructor may fil1 a dual role: teaching an essential branch of life science, and gradually developing the student's knowledge in mechanics.