Biomass for Bioenergy and Biomaterials

Biomass for Bioenergy and Biomaterials

Author: Nidhi Adlakha

Publisher: CRC Press

Published: 2021-10-22

Total Pages: 385

ISBN-13: 1000468836

DOWNLOAD EBOOK

Biomass for Bioenergy and Biomaterials presents an overview of recent studies developed specifically for lignocellulose-based production of biofuels, biochemicals, and functional materials. The emphasis is on using sustainable chemistry and engineering to develop innovative materials and fuels for practical applications. Technological strategies for the physical processing or biological conversion of biomass for material production are also presented. FEATURES Offers a comprehensive view of biomass processing, biofuel production, life cycle assessment, techno-economic analysis, and biochemical and biomaterial production Presents details of innovative strategies to pretreat biomass Helps readers understand the underlying metabolic pathways and identify the best engineering strategies for their native strain Highlights different strategies to make biomaterials from biomass Provides insight into the potential economic viability of the biomass-based process This book serves as an ideal reference for academic researchers and engineers working with renewable natural materials, the biorefining of lignocellulose, and biofuels. It can also be used as a comprehensive reference source for university students in metabolic, chemical, and environmental engineering.


Handbook of Research on Bioenergy and Biomaterials

Handbook of Research on Bioenergy and Biomaterials

Author: Leopoldo Javier Ríos González

Publisher: CRC Press

Published: 2021-12-23

Total Pages: 736

ISBN-13: 1000210731

DOWNLOAD EBOOK

The handbook provides an understanding of consolidated processing and biorefinery systems for the production of bio-based chemicals and value-added bioproducts from renewable sources. The chapters look at a variety of bioenergy technological advances and improvements in the energy and materials sectors that aim to lower our dependence of fossil fuels and consequently reduce greenhouse gas (GHG) emissions. The volume looks at a selection of processes for the production of energy and biomaterials, including the Fischer–Tropsch process, gasification, pyrolysis, combustion, fermentation from renewable sources (such as, plants, animals and their byproducts), and others. Applications that are explored include transportation fuels, biodiesel production, wastewater treatment, edible packaging, bioplastics, physical rehabilitation, tissue engineering, biomedical applications, thermal insulation, industrial value compounds, and more. All of the topics covered in this publication address consolidated processes that play a pivotal role in the production of bioenergy and biomaterials because these processes require fewer unitary operations needed in the process, leading to a more direct method of production. This type of production system contributes to decreasing negative effects on the environment, lowering costs, saving energy and time, and improving profitability and efficiency. This volume will be valuable for the industrial sector, for researchers and scientists, as well as for faculty and advanced students.


Biomass as Renewable Raw Material to Obtain Bioproducts of High-Tech Value

Biomass as Renewable Raw Material to Obtain Bioproducts of High-Tech Value

Author: Valentin I. Popa

Publisher: Elsevier

Published: 2018-02-15

Total Pages: 494

ISBN-13: 0444637974

DOWNLOAD EBOOK

Biomass as Renewable Raw Material to Obtain Bioproducts of High-tech Value examines the use of biomass as a raw material, including terrestrial and aquatic sources to obtain extracts (e.g. polyphenols), biofuels, and/or intermediates (furfural, levulinates) through chemical and biochemical processes. The book also covers the production of natural polymers using biomass and the biosynthetic process, cellulose modified by biochemical and chemical methods, and other biochemicals that can be used in the synthesis of various pharmaceuticals. Featuring case studies, discussions of sustainability, and nanomedical, biomedical, and pharmaceutical applications, Biomass as Renewable Raw Material to Obtain Bioproducts of High-tech Value is a crucial resource for biotechnologists, biochemical engineers, biochemists, microbiologists, and research students in these areas, as well as entrepreneurs, policy makers, stakeholders, and politicians. - Reviews biomass resources and compounds with bioactive properties - Describes chemical and biochemical processes for creating biofuels from biomass - Outlines production of polysaccharides and cellulose derivatives - Features applications in the fields of medicine and pharmacy


Biorefinery

Biorefinery

Author: Juan-Rodrigo Bastidas-Oyanedel

Publisher: Springer

Published: 2019-04-15

Total Pages: 756

ISBN-13: 3030109615

DOWNLOAD EBOOK

This book discusses the biorefinery of biomass feedstocks. In-depth chapters highlight the scientific and technical aspects and present a techno-economic analysis of such systems. By using a TEA approach, the authors present feasible pathways for the conversion of biomass (both residual biomass, energy crops, and algae biomass), showing the different possibilities for the production of biochemical materials, biofuels, and fertilizers. The concepts presented in this book will link companies, investors, and governments by providing a framework that will help reduce pollutants and create a biomass-related economy that incorporates the newest developments and technologies in the area.


Biomass and Bioenergy

Biomass and Bioenergy

Author: Khalid Rehman Hakeem

Publisher: Springer

Published: 2014-08-25

Total Pages: 377

ISBN-13: 3319076418

DOWNLOAD EBOOK

Biomass obtained from agricultural residues or forest can be used to produce different materials and bioenergy required in a modern society. As compared to other resources available, biomass is one of the most common and widespread resources in the world. Thus, biomass has the potential to provide a renewable energy source, both locally and across large areas of the world. It is estimated that the total investment in the biomass sector between 2008 and 2021 will reach the large sum of $104 billion. Presently bioenergy is the most important renewable energy option and will remain so the near and medium-term future. Previously several countries try to explore the utilization of biomass in bioenergy and composite sector. Biomass has the potential to become the world’s largest and most sustainable energy source and will be very much in demand. Bioenergy is based on resources that can be utilized on a sustainable basis all around the world and can thus serve as an effective option for the provision of energy services. In addition, the benefits accrued go beyond energy provision, creating unique opportunities for regional development. The present book will provide an up-to-date account of non-wood, forest residues, agricultural biomass (natural fibers), and energy crops together with processing, properties and its applications to ensure biomass utilization and reuse. All aspects of biomass and bioenergy and their properties and applications will be critically re-examined. The book consists of three sections, presenting Non wood and forest products from forestry, arboriculture activities or from wood processing, agricultural biomass (natural fibers) from agricultural harvesting or processing and finally energy crops: high yield crops and grasses grown especially for energy production.


Introduction to Renewable Biomaterials

Introduction to Renewable Biomaterials

Author: Ali S. Ayoub

Publisher: John Wiley & Sons

Published: 2017-11-13

Total Pages: 286

ISBN-13: 1119962293

DOWNLOAD EBOOK

Covers the entire evolutionary spectrum of biomass, from its genetic modification and harvesting, to conversion technologies, life cycle analysis, and its value to the current global economy This original textbook introduces readers to biomass—a renewable resource derived from forest, agriculture, and organic-based materials—which has attracted significant attention as a sustainable alternative to petrochemicals for large-scale production of fuels, materials, and chemicals. The current renaissance in the manipulation and uses of biomass has been so abrupt and focused, that very few educational textbooks actually cover these topics to any great extent. That’s why this interdisciplinary text is a welcome resource for those seeking a better understanding of this new discipline. It combines the underpinning science of biomass with technology applications and sustainability considerations to provide a broad focus to its readers. Introduction to Renewable Biomaterials: First Principles and Concepts consists of eight chapters on the following topics: fundamental biochemical & biotechnological principles; principles and methodologies controlling plant growth and silviculture; fundamental science and engineering considerations; critical considerations and strategies for harvesting; first principles of pretreatment; conversion technologies; characterization methods and techniques; and life cycle analysis. Each chapter includes a glossary of terms, two to three problem sets, and boxes to highlight novel discoveries and instruments. Chapters also offer questions for further consideration and suggestions for further reading. Developed from a successful USDA funded course, run by a partnership of three US universities: BioSUCEED - BioProducts Sustainability, a University Cooperative Center for Excellence in Education Covers the entire evolutionary spectrum of biomass, from genetic modification to life cycle analysis Presents the key chemistry, biology, technology, and sustainability aspects of biomaterials Edited by a highly regarded academic team, with extensive research and teaching experience in the field Introduction to Renewable Biomaterials: First Principles and Concepts is an ideal text for advanced academics and industry professionals involved with biomass and renewable resources, bioenergy, biorefining, biotechnology, materials science, sustainable chemistry, chemical engineering, crop science and technology, agriculture.


Biomass Conversion

Biomass Conversion

Author: Chinnappan Baskar

Publisher: Springer Science & Business Media

Published: 2012-05-08

Total Pages: 484

ISBN-13: 3642284183

DOWNLOAD EBOOK

The consumption of petroleum has surged during the 20th century, at least partially because of the rise of the automobile industry. Today, fossil fuels such as coal, oil, and natural gas provide more than three quarters of the world's energy. Unfortunately, the growing demand for fossil fuel resources comes at a time of diminishing reserves of these nonrenewable resources. The worldwide reserves of oil are sufficient to supply energy and chemicals for only about another 40 years, causing widening concerns about rising oil prices. The use of biomass to produce energy is only one form of renewable energy that can be utilized to reduce the impact of energy production and use on the global environment. Biomass can be converted into three main products such as energy, biofuels and fine chemicals using a number of different processes. Today, it is a great challenge for researchers to find new environmentally benign methodology for biomass conversion, which are industrially profitable as well. This book focuses on the conversion of biomass to biofuels, bioenergy and fine chemicals with the interface of biotechnology, microbiology, chemistry and materials science. An international scientific authorship summarizes the state-of-the-art of the current research and gives an outlook on future developments.


Biomass, Biofuels, Biochemicals

Biomass, Biofuels, Biochemicals

Author: Indu Shekhar Thakur

Publisher: Elsevier

Published: 2021-12-03

Total Pages: 508

ISBN-13: 0128235004

DOWNLOAD EBOOK

Biomass, Biochemicals, Biofuel: Climate Change Mitigation: Sequestration of Green House Gases is designed to not only give basic knowledge on the topics presented, but also to enlighten on conventional and advanced technologies, socioeconomic aspects, techno-economic feasibility, models and modeling tools, and detailed LCA approaches in the sequestration of GHGs for biofuel and biomaterials, including biopolymer production. These innovative technologies and novel prospective directly find applications in day-to-day practices. The book is a useful guide to politicians, researchers, teachers and waste management practitioners. It offers a treasure of knowledge to guide readers on the importance of GHGs sequestration in important areas. The issue of climate change is gaining much more attention by researchers, public, politicians and others. Climate change is one of the most complex issues the world is facing today. It has implications across society, including in science, technology, economics, society, politics, and moral and ethical dilemmas. Introduces appropriate technologies for GHG sequestration for biofuel and biomaterials production Presents the best available technologies for climate mitigation and examples from various geographical areas Evaluates technological systems to help users develop technically best and economically feasible projects Offers chemical looping mechanisms for the sequestration of green house gases for biofuel and biomaterials


Recent Developments in Bioenergy Research

Recent Developments in Bioenergy Research

Author: Vijai G. Gupta

Publisher: Elsevier

Published: 2020-06-23

Total Pages: 470

ISBN-13: 0128195975

DOWNLOAD EBOOK

Recent Developments in Bioenergy Research reviews all these topics, reports recent research findings, and presents potential solutions to challenging issues. The book consolidates the most recent research on the (bio)technologies, concepts and commercial developments that are currently in progress on different types of widely-used biofuels and integrated biorefineries across biochemistry, biotechnology, biochemical engineering and microbiology. Chapters include very recent/emerging topics, such as non-ionic and ionic liquids/surfactants for enhancement of lignocellulose enzymatic hydrolysis and lignocellulose biomass as a rich source of bio-ionic liquids. The book is a useful source of information for those working in the area of- industrial wastewater treatment and microbial fuel cells, but is also a great resource for senior undergraduate and graduate students, researchers, professionals, biochemical engineers and other interested individuals/groups working in the field of biofuel/bioenergy.


Biomass Utilization

Biomass Utilization

Author: Wilfred Cote

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 720

ISBN-13: 1475708335

DOWNLOAD EBOOK

This proceedings volume represents the culmination of nearly three years of planning, organizing and carrying out of a NATO Ad vanced Study Institute on Biomass Utilization. The effort was initi ated by Dr. Harry Sobel, then Editor of Biosources Digest, and a steering committee representing the many disciplines that this field brings together. . When the fiscal and logistical details of the original plan could not be worked out, the idea was temporarily suspended. In the spring of 1982, the Renewable Materials Institute of the State University of New York at the College of Environmental Science and Forestry in Syracuse, New York revived the plan. A number of modifications had to be made, including the venue which was changed from the U.S.A. to Portugal. Additional funding beyond the basic support provided by the Scientific Affairs Division of NATO had to be obtained. Ul timately there were supplementary grants from the Foundation for Microbiology and the Anne S. Richardson Fund to assist student participants. The New York State College of Forestry Foundation, Inc. provided major support through the Renewable Ma terials Institute. The ASI was held in Alcabideche, Portugal from September 26 to October 9, 1982. Eighty participants including fifteen principal lecturers were assembled at the Hotel Sintra Estoril for the program that was organized as a comprehensive course on biomass utilization. The main lectures were supplemented by relevant short papers offered by the participants.