Biomass as Feedstock for a Bioenergy and Bioproducts Industry

Biomass as Feedstock for a Bioenergy and Bioproducts Industry

Author:

Publisher:

Published: 2005

Total Pages: 82

ISBN-13:

DOWNLOAD EBOOK

The U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA) are both strongly committed to expanding the role of biomass as an energy source. In particular, they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries-- biorefineries--making a variety of fuels, chemicals, and other products. As part of this effort, the Biomass R AND D Technical Advisory Committee, a panel established by the Congress to guide the future direction of federally funded biomass R AND D, envisioned a 30 percent replacement of the current U.S. petroleum consumption with biofuels by 2030. Biomass--all plant and plant-derived materials including animal manure, not just starch, sugar, oil crops already used for food and energy--has great potential to provide renewable energy for America s future. Biomass recently surpassed hydropower as the largest domestic source of renewable energy and currently provides over 3 percent of the total energy consumption in the United States. In addition to the many benefits common to renewable energy, biomass is particularly attractive because it is the only current renewable source of liquid transportation fuel. This, of course, makes it invaluable in reducing oil imports--one of our most pressing energy needs. A key question, however, is how large a role could biomass play in responding to the nation's energy demands. Assuming that economic and financial policies and advances in conversion technologies make biomass fuels and products more economically viable, could the biorefinery industry be large enough to have a significant impact on energy supply and oil imports? Any and all contributions are certainly needed, but would the biomass potential be sufficiently large to justify the necessary capital replacements in the fuels and automobile sectors?


Biomass as Feedstock for a Bioenergy and Bioproducts Industry

Biomass as Feedstock for a Bioenergy and Bioproducts Industry

Author: R. D. Perlack

Publisher:

Published: 2005

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA) are both strongly committed to expanding the role of biomass as an energy source. In particular, they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries--biorefineries--making a variety of fuels, chemicals, and other products. As part of this effort, the Biomass R & D Technical Advisory Committee, a panel established by the Congress to guide the future direction of federally funded biomass R & D, envisioned a 30 percent replacement of the current U.S. petroleum consumption with biofuels by 2030. Biomass--all plant and plant-derived materials including animal manure, not just starch, sugar, oil crops already used for food and energy--has great potential to provide renewable energy for America's future. Biomass recently surpassed hydropower as the largest domestic source of renewable energy and currently provides over 3 percent of the total energy consumption in the United States. In addition to the many benefits common to renewable energy, biomass is particularly attractive because it is the only current renewable source of liquid transportation fuel. This, of course, makes it invaluable in reducing oil imports--one of our most pressing energy needs. A key question, however, is how large a role could biomass play in responding to the nation's energy demands. Assuming that economic and financial policies and advances in conversion technologies make biomass fuels and products more economically viable, could the biorefinery industry be large enough to have a significant impact on energy supply and oil imports? Any and all contributions are certainly needed, but would the biomass potential be sufficiently large to justify the necessary capital replacements in the fuels and automobile sectors? The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the country's present petroleum consumption--the goal set by the Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.


Biomass as Feedstock for a Bioenergy and Bioproducts Industry

Biomass as Feedstock for a Bioenergy and Bioproducts Industry

Author:

Publisher:

Published: 2005

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the country's present petroleum consumption - the goal set by the Biomass R & D Technical Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.


Advancements in Biomass Feedstock Preprocessing: Conversion Ready Feedstocks

Advancements in Biomass Feedstock Preprocessing: Conversion Ready Feedstocks

Author: J. Richard Hess

Publisher: Frontiers Media SA

Published: 2020-03-12

Total Pages: 319

ISBN-13: 2889634655

DOWNLOAD EBOOK

The success of lignocellulosic biofuels and biochemical industries depends upon an economic and reliable supply of quality biomass. However, research and development efforts have historically focused on the utilization of agriculturally-derived, cellulosic feedstocks without consideration of their low energy density, high variations in physical and chemical characteristics and potential supply risks in terms of availability and affordability. This Research Topic will explore strategies that enable supply chain improvements in biomass quality and consistency through blending, preprocessing, diversity and landscape design for development of conversion-ready, lignocellulosic feedstocks for production of biofuels and bio-products. Biomass variability has proven a formidable challenge to the emerging biorefining industry, impeding continuous operation and reducing yields required for economical production of lignocellulosic biofuels at scale. Conventional supply systems lack the preprocessing capabilities necessary to ensure consistent biomass feedstocks with physical and chemical properties that are compatible with supply chain operations and conversion processes. Direct coupling of conventional feedstock supply systems with sophisticated conversion systems has reduced the operability of biorefining processes to less than 50%. As the bioeconomy grows, the inherent variability of biomass resources cannot be managed by passive means alone. As such, there is a need to fully recognize the magnitude of biomass variability and uncertainty, as well as the cost of failing to design feedstock supply systems that can mitigate biomass variability and uncertainty. A paradigm shift is needed, from biorefinery designs using raw, single-resource biomass, to advanced feedstock supply systems that harness diverse biomass resources to enable supply chain resilience and development of conversion-ready feedstocks. Blending and preprocessing (e.g., drying, sorting, sizing, fractionation, leaching, densification, etc.) can mitigate variable quality and performance in diverse resources when integrated with downstream conversion systems. Decoupling feedstock supply from biorefining provides an opportunity to manage supply risks and incorporate value-added upgrading to develop feedstocks with improved convertibility and/ or market fungibility. Conversion-ready feedstocks have undergone the required preprocessing to ensure compatibility with conversion and utilization prior to delivery at the biorefinery and represent lignocellulosic biomass with physical and chemical properties that are tailored to meet the requirements of industrially-relevant handling and conversion systems.


Bioenergy Research: Advances and Applications

Bioenergy Research: Advances and Applications

Author: Vijai G. Gupta

Publisher: Newnes

Published: 2013-12-05

Total Pages: 513

ISBN-13: 0444595643

DOWNLOAD EBOOK

Bioenergy Research: Advances and Applications brings biology and engineering together to address the challenges of future energy needs. The book consolidates the most recent research on current technologies, concepts, and commercial developments in various types of widely used biofuels and integrated biorefineries, across the disciplines of biochemistry, biotechnology, phytology, and microbiology. All the chapters in the book are derived from international scientific experts in their respective research areas. They provide you with clear and concise information on both standard and more recent bioenergy production methods, including hydrolysis and microbial fermentation. Chapters are also designed to facilitate early stage researchers, and enables you to easily grasp the concepts, methodologies and application of bioenergy technologies. Each chapter in the book describes the merits and drawbacks of each technology as well as its usefulness. The book provides information on recent approaches to graduates, post-graduates, researchers and practitioners studying and working in field of the bioenergy. It is an invaluable information resource on biomass-based biofuels for fundamental and applied research, catering to researchers in the areas of bio-hydrogen, bioethanol, bio-methane and biorefineries, and the use of microbial processes in the conversion of biomass into biofuels. Reviews all existing and promising technologies for production of advanced biofuels in addition to bioenergy policies and research funding Cutting-edge research concepts for biofuels production using biological and biochemical routes, including microbial fuel cells Includes production methods and conversion processes for all types of biofuels, including bioethanol and biohydrogen, and outlines the pros and cons of each


Engineering and Science of Biomass Feedstock Production and Provision

Engineering and Science of Biomass Feedstock Production and Provision

Author: Yogendra Shastri

Publisher: Springer Science & Business Media

Published: 2014-02-10

Total Pages: 269

ISBN-13: 1489980148

DOWNLOAD EBOOK

The biomass based energy sector, especially the one based on lignocellulosic sources such as switchgrass Miscanthus, forest residues and short rotation coppice, will play an important role in our drive towards renewable energy. The biomass feedstock production (BFP) subsystem provides the necessary material inputs to the conversion processes for energy production. This subsystem includes the agronomic production of energy crops and the physical handling and delivery of biomass, as well as other enabling logistics. Achieving a sustainable BFP system is therefore paramount for the success of the emerging bioenergy sector. However, low bulk and energy densities, seasonal and weather sensitive availability, distributed supply and lack of commercial scale production experience create unique challenges. Moreover, novel region specific feedstock alternatives continue to emerge. Engineering will play a critical role in addressing these challenges and ensuring the techno-economic feasibility of this sector. It must also integrate with the biological, physical and chemical sciences and incorporate externalities, such as social/economic considerations, environmental impact and policy/regulatory issues, to achieve a truly sustainable system. Tremendous progress has been made in the past few years while new challenges have simultaneously emerged that need further investigation. It is therefore prudent at this time to review the current status and capture the future challenges through a comprehensive book. This work will serve as an authoritative treatise on the topic that can help researchers, educators and students interested in the field of biomass feedstock production, with particular interest in the engineering aspects.​ ​


U.S. Billion-ton Update

U.S. Billion-ton Update

Author: Robert D. Perlack

Publisher:

Published: 2011

Total Pages: 194

ISBN-13:

DOWNLOAD EBOOK

The report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of potential biomass available within the contiguous United States based on assumptions about current and future inventory production capacity, availability, and technology. This follow-up report, U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry (generally referred to as the 2011 BT2), expands on the 2005 BTS to include: a spatial, county-by-county inventory of potentially available primary feedstocks, price and available quantities (e.g., supply curves) for the individual feedstocks and a more rigorous treatment and modeling of resource sustainability.


Biofuels

Biofuels

Author: Ashok Pandey

Publisher: Academic Press

Published: 2011-07-18

Total Pages: 642

ISBN-13: 0123850991

DOWNLOAD EBOOK

"Biofuels" provides state-of-the-art information on the status of biofuel production and related aspects. It includes a detailed overview of the alternative energy field and the role of biofuels as new energy sources, and gives a detailed account of the production of biodiesel from non-conventional bio-feedstocks such as algae and vegetable oils.


The Complete Book on Biomass Based Products (Biochemicals, Biofuels, Activated Carbon)

The Complete Book on Biomass Based Products (Biochemicals, Biofuels, Activated Carbon)

Author: NIIR Board of Consultants & Engineers

Publisher: ASIA PACIFIC BUSINESS PRESS Inc.

Published: 2015-02-15

Total Pages: 385

ISBN-13: 8178331586

DOWNLOAD EBOOK

Biomass use is growing globally. Biomass is biological material derived from living, or recently living organisms. It most often refers to plants or plant-based materials which are specifically called lignocellulosic biomass. Biomass (organic matter that can be converted into energy) may include food crops, crops for energy, crop residues, wood waste and byproducts, and animal manure. It is one of the most plentiful and well-utilized sources of renewable energy in the world. Broadly speaking, it is organic material produced by the photosynthesis of light. The chemical materials (organic compounds of carbons) are stored and can then be used to generate energy. The most common biomass used for energy is wood from trees. Wood has been used by humans for producing energy for heating and cooking for a very long time. As an energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel. Conversion of biomass to biofuel can be achieved by different methods which are broadly classified into: thermal, chemical, and biochemical methods. Biomass gasification is the conversion of solid fuels like wood and agricultural residues into a combustible gas mixture. The gasification system basically consists of a gasifier unit, a purification system and energy converters- burner or engine. This book offers comprehensive coverage of the design and analysis of biomass gasification, the key technology enabling the production of biofuels from all viable sources like sugar beet and sweet sorghum. It aims at creating an understanding of the nature of biomass resources for energy and fuels, the variety of processes that are available for conversion of the wastes into energy or fuels. The book discusses the overview of the Biomass Energy along with their Properties, Composition, Benefits, Characteristics and Manufacturing Process of Biomass based products. Also it contains suppliers contact details of plant & machinery with their photographs. The content includes biomass renewable energy, prospective renewable resources for bio-based processes, biochemical from biomass, biomass based chemicals, biofuel production from biomass crops, biomass gasification, reuse of bio-genic iron oxides and woody biomass fly ash in cement based materials and agricultural areas, biofuel briquettes from biomass, biomass based activated carbon, environmental aspects. It will be a standard reference book for Professionals, Decision-makers, Engineers, those studying and researching in this important area and others interested in the field of biomass based products. Professionals in academia and industry will appreciate this comprehensive and practical reference book, due to its multidisciplinary nature. Tags Activated Carbon from biomass, Activated Carbon from Waste Biomass, Applications of biomass gasification, Best small and cottage scale industries, Bio-based Products from Biomass, Bio-briquette Manufacturing Process, Biochemical Conversion of Biomass, Biochemical conversion process, Biochemicals from biomass, Bioenergy (Biofuels and Biomass), Bioenergy Conversion Technologies, Bioenergy: biofuel production chains, Biofuel and other biomass based products, Biofuel briquettes from biomass, Biofuel from plant biomass, Biofuel production, Biofuels Production from Biomass, Biofuels from biomass, Biomass and Bioenergy Biomass Technology, Biomass based activated carbon, Biomass Based Products, Biomass based products making machine factory, Biomass based products Making Small Business Manufacturing, Biomass based products manufacturing Business, Biomass Based Small Scale Industries Projects, Biomass Bio fuel Briquettes, Biomass Briquette Production, Biomass Cultivation and Biomass Briquettes, Biomass energy, Biomass Energy and Biochemical Conversion Processing, Biomass fuel, Biomass gasification, Biomass Gasification Technology, Biomass Gasifier for Thermal and Power applications, Biomass in the manufacture of industrial products, Biomass Processing & Biomass Based Profitable Products, Biomass Processing Industry in India, Biomass Processing Projects, Biomass Processing Technologies, Biomass resources and biofuels potential, Biomass-based chemicals, Biomass-Based Materials and Technologies for Energy, Business consultancy, Business consultant, Business guidance for biomass processing industry, Business guidance to clients, Business Opportunities in Biomass Energy Sector, Business Plan for a Startup Business, Business Plan: Biomass Power Plant, Business start-up, Chemical production from biomass, Complete Book on Biomass Based Products, Great Opportunity for Startup, Growing Energy on the Farm: Biomass and Agriculture, How does biomass work, How to start a biomass processing plant, How to Start a Biomass processing business?, How to Start a Biomass Production Business, How to start a successful Biomass business, How to Start Biomass Processing Industry in India, Manufacturing unit for biomass Energy in India, Modern small and cottage scale industries, Most Profitable Biomass Processing Business Ideas, New small scale ideas in Biomass processing industry, Preparation of Project Profiles, Process technology books, Production of Bio-coal and Activated Carbon from Biomass, Production of Renewable Fuels and Chemicals from Biomass, Profitable small and cottage scale industries, Profitable Small Scale Biomass based products manufacturing, Project for startups, Project identification and selection, Renewable Energy - Biomass Gasification, Reuse of bio-genic iron oxides and woody biomass fly ash, Setting up and opening your Biomass Business, Small Scale Biomass Processing Projects, Small scale biomass production line, Small scale Commercial Biomass based products making, Small Start-up Business Project, Source of energy, Start Up India, Stand Up India, Starting a Biomass Processing Business, Starting Business Plan with Biomass, Starting Up: Biomass Energy, Startup, Start-up Business Plan for Biomass processing, Startup ideas, Startup Project, Startup Project for Biomass based products, Startup project plan, Value Added Chemicals from Biomass, What is biomass used for