Biologically-Inspired Collaborative Computing

Biologically-Inspired Collaborative Computing

Author: George A. Agoston

Publisher: Springer Science & Business Media

Published: 1979

Total Pages: 250

ISBN-13: 038709654X

DOWNLOAD EBOOK

“Look deep into nature and you will understand everything better.” advised Albert Einstein. In recent years, the research communities in Computer Science, Engineering, and other disciplines have taken this message to heart, and a relatively new field of “biologically-inspired computing” has been born. Inspiration is being drawn from nature, from the behaviors of colonies of ants, of swarms of bees and even the human body. This new paradigm in computing takes many simple autonomous objects or agents and lets them jointly perform a complex task, without having the need for centralized control. In this paradigm, these simple objects interact locally with their environment using simple rules. Applications include optimization algorithms, communications networks, scheduling and decision making, supply-chain management, and robotics, to name just a few. There are many disciplines involved in making such systems work: from artificial intelligence to energy aware systems. Often these disciplines have their own field of focus, have their own conferences, or only deal with specialized s- problems (e.g. swarm intelligence, biologically inspired computation, sensor networks). The Second IFIP Conference on Biologically-Inspired Collaborative Computing aims to bridge this separation of the scientific community and bring together researchers in the fields of Organic Computing, Autonomic Computing, Self-Organizing Systems, Pervasive Computing and related areas. We are very pleased to have two very important keynote presentations: Swarm Robotics: The Coordination of Robots via Swarm Intelligence Principles by Marco Dorigo (Université Libre de Bruxelles, Belgium), of which an abstract is included in this volume.


Biologically-Inspired Collaborative Computing

Biologically-Inspired Collaborative Computing

Author: Mike Hinchey

Publisher: Springer

Published: 2008-07-09

Total Pages: 250

ISBN-13: 0387096558

DOWNLOAD EBOOK

“Look deep into nature and you will understand everything better.” advised Albert Einstein. In recent years, the research communities in Computer Science, Engineering, and other disciplines have taken this message to heart, and a relatively new field of “biologically-inspired computing” has been born. Inspiration is being drawn from nature, from the behaviors of colonies of ants, of swarms of bees and even the human body. This new paradigm in computing takes many simple autonomous objects or agents and lets them jointly perform a complex task, without having the need for centralized control. In this paradigm, these simple objects interact locally with their environment using simple rules. Applications include optimization algorithms, communications networks, scheduling and decision making, supply-chain management, and robotics, to name just a few. There are many disciplines involved in making such systems work: from artificial intelligence to energy aware systems. Often these disciplines have their own field of focus, have their own conferences, or only deal with specialized s- problems (e.g. swarm intelligence, biologically inspired computation, sensor networks). The Second IFIP Conference on Biologically-Inspired Collaborative Computing aims to bridge this separation of the scientific community and bring together researchers in the fields of Organic Computing, Autonomic Computing, Self-Organizing Systems, Pervasive Computing and related areas. We are very pleased to have two very important keynote presentations: Swarm Robotics: The Coordination of Robots via Swarm Intelligence Principles by Marco Dorigo (Université Libre de Bruxelles, Belgium), of which an abstract is included in this volume.


Color Theory and Its Application in Art and Design

Color Theory and Its Application in Art and Design

Author: George A. Agoston

Publisher: Springer

Published: 2013-06-05

Total Pages: 303

ISBN-13: 3540347348

DOWNLOAD EBOOK

This book directly addresses a long-felt, unsatisfied need of modern color science - an appreciative and technically sound presentation of the principles and main offerings of colorimetry to artists and designers, written by one of them. With his unique blend of training and experience in engineering, with his lifelong interest and, latterly, career in art and art education, Dr. Agoston is unusually well prepared to convey the message of color science to art and design. His book fulfills the hopes I had when I first heard about him and his book. I foresee important and long-lasting impacts of this book, analogous to those of the epoch-making writings by earlier artist-scientists, such as Leonardo, Chevreul, Munsell, and Pope. Nearly all persons who have contributed to color science, recently as well as formerly, were attracted to the study of color by color in art. Use of objective or scientific methods did not result from any cold, detached attitude, but from the inherent difficulties of the problems concerning color and its use, by which they were intrigued. Modern education and experience has taught many people how to tackle difficult problems by use of scientific methods. Therefore - color science.


Biologically-inspired Computing for the Arts

Biologically-inspired Computing for the Arts

Author: Anna Ursyn

Publisher:

Published: 2012

Total Pages: 417

ISBN-13: 9781466609440

DOWNLOAD EBOOK

"This book comprises a collection of authors' individual approaches to the relationship between nature, science, and art created with the use of computers, discussing issues related to the use of visual language in communication about biologically-inspired scientific data, visual literacy in science, and application of practitioner's approach"--Provided by publisher.


Recent Developments in Biologically Inspired Computing

Recent Developments in Biologically Inspired Computing

Author: Leandro N. De Castro

Publisher: IGI Global

Published: 2005-01-01

Total Pages: 460

ISBN-13: 9781591403128

DOWNLOAD EBOOK

Recent Developments in Biologically Inspired Computing is necessary reading for undergraduate and graduate students, and researchers interested in knowing the most recent advances in problem solving techniques inspired by nature. This book covers the most relevant areas in computational intelligence, including evolutionary algorithms, artificial neural networks, artificial immune systems and swarm systems. It also brings together novel and philosophical trends in the exciting fields of artificial life and robotics. This book has the advantage of covering a large number of computational approaches, presenting the state-of-the-art before entering into the details of specific extensions and new developments. Pseudocodes, flow charts and examples of applications are provided so as to help newcomers and mature researchers to get the point of the new approaches presented.


Bio-inspired Algorithms for Data Streaming and Visualization, Big Data Management, and Fog Computing

Bio-inspired Algorithms for Data Streaming and Visualization, Big Data Management, and Fog Computing

Author: Simon James Fong

Publisher: Springer Nature

Published: 2020-08-25

Total Pages: 228

ISBN-13: 981156695X

DOWNLOAD EBOOK

This book aims to provide some insights into recently developed bio-inspired algorithms within recent emerging trends of fog computing, sentiment analysis, and data streaming as well as to provide a more comprehensive approach to the big data management from pre-processing to analytics to visualization phases. The subject area of this book is within the realm of computer science, notably algorithms (meta-heuristic and, more particularly, bio-inspired algorithms). Although application domains of these new algorithms may be mentioned, the scope of this book is not on the application of algorithms to specific or general domains but to provide an update on recent research trends for bio-inspired algorithms within a specific application domain or emerging area. These areas include data streaming, fog computing, and phases of big data management. One of the reasons for writing this book is that the bio-inspired approach does not receive much attention but shows considerable promise and diversity in terms of approach of many issues in big data and streaming. Some novel approaches of this book are the use of these algorithms to all phases of data management (not just a particular phase such as data mining or business intelligence as many books focus on); effective demonstration of the effectiveness of a selected algorithm within a chapter against comparative algorithms using the experimental method. Another novel approach is a brief overview and evaluation of traditional algorithms, both sequential and parallel, for use in data mining, in order to provide an overview of existing algorithms in use. This overview complements a further chapter on bio-inspired algorithms for data mining to enable readers to make a more suitable choice of algorithm for data mining within a particular context. In all chapters, references for further reading are provided, and in selected chapters, the author also include ideas for future research.


Biologically-Inspired Collaborative Computing

Biologically-Inspired Collaborative Computing

Author: Mike Hinchey

Publisher: Springer

Published: 2010-11-19

Total Pages: 0

ISBN-13: 9781441935021

DOWNLOAD EBOOK

“Look deep into nature and you will understand everything better.” advised Albert Einstein. In recent years, the research communities in Computer Science, Engineering, and other disciplines have taken this message to heart, and a relatively new field of “biologically-inspired computing” has been born. Inspiration is being drawn from nature, from the behaviors of colonies of ants, of swarms of bees and even the human body. This new paradigm in computing takes many simple autonomous objects or agents and lets them jointly perform a complex task, without having the need for centralized control. In this paradigm, these simple objects interact locally with their environment using simple rules. Applications include optimization algorithms, communications networks, scheduling and decision making, supply-chain management, and robotics, to name just a few. There are many disciplines involved in making such systems work: from artificial intelligence to energy aware systems. Often these disciplines have their own field of focus, have their own conferences, or only deal with specialized s- problems (e.g. swarm intelligence, biologically inspired computation, sensor networks). The Second IFIP Conference on Biologically-Inspired Collaborative Computing aims to bridge this separation of the scientific community and bring together researchers in the fields of Organic Computing, Autonomic Computing, Self-Organizing Systems, Pervasive Computing and related areas. We are very pleased to have two very important keynote presentations: Swarm Robotics: The Coordination of Robots via Swarm Intelligence Principles by Marco Dorigo (Université Libre de Bruxelles, Belgium), of which an abstract is included in this volume.


Biologically Inspired Design

Biologically Inspired Design

Author: Ashok K Goel

Publisher: Springer Science & Business Media

Published: 2013-07-16

Total Pages: 333

ISBN-13: 1447152484

DOWNLOAD EBOOK

From simple cases such as hook and latch attachments found in Velcro to articulated-wing flying vehicles, biology often has been used to inspire many creative design ideas. The scientific challenge now is to transform the paradigm into a repeatable and scalable methodology. Biologically Inspired Design explores computational techniques and tools that can help integrate the method into design practice. With an inspiring foreword from Janine Benyus, Biologically Inspired Design contains a dozen chapters written by some of the leading scholars in the transdisciplinary field of bioinspired design, such as Frank Fish, Julian Vincent and Jeannette Yen from biology, and Amaresk Chakrabarti, Satyandra Gupta and Li Shu from engineering. Based in part on discussions at two workshops sponsored by the United States National Science Foundation, this volume introduces and develops several methods and tools for bioinspired design including: Information-processing theories, Natural language techniques, Knowledge-based tools, and Functional approaches and Pedagogical techniques. By exploring these fundamental theories, techniques and tools for supporting biologically inspired design, this volume provides a comprehensive resource for design practitioners wishing to explore the paradigm, an invaluable guide to design educators interested in teaching the method, and a preliminary reading for design researchers wanting to investigate bioinspired design.


Biologically Inspired Cognitive Architectures (BICA) for Young Scientists

Biologically Inspired Cognitive Architectures (BICA) for Young Scientists

Author: Alexei V. Samsonovich

Publisher: Springer

Published: 2017-07-26

Total Pages: 358

ISBN-13: 9783319639390

DOWNLOAD EBOOK

This book includes papers from the second year of the prestigious First International Early Research Career Enhancement School (FIERCES) series: a successful, new format that puts a school in direct connection with a conference and a social program, all dedicated to young scientists. Reflecting the friendly, social atmosphere of excitement and opportunity, the papers represent a good mixture of cutting-edge research focused on advances towards the most inspiring challenges of our time and first ambitious attempts at major challenges by as yet unknown, talented young scientists. In this second year of FIERCES, the BICA Challenge (to replicate all the essential aspects of the human mind in the digital environment) meets the Cybersecurity Challenge (to protect all the essential assets of the human mind in the digital environment), which is equally important in our age. As a result, the book fosters lively discussions on today’s hot topics in science and technology, and stimulates the emergence of new cross-disciplinary, cross-generation and cross-cultural collaboration. FIERCES 2017, or the First International Early Research Career Enhancement School on Biologically Inspired Cognitive Architectures and Cybersecurity, was held on August 1–5 at the Baltschug Kempinski in Moscow, Russia.