This is the third edition of this manual which contains updated practical guidance on biosafety techniques in laboratories at all levels. It is organised into nine sections and issues covered include: microbiological risk assessment; lab design and facilities; biosecurity concepts; safety equipment; contingency planning; disinfection and sterilisation; the transport of infectious substances; biosafety and the safe use of recombinant DNA technology; chemical, fire and electrical safety aspects; safety organisation and training programmes; and the safety checklist.
These guidelines were developed to guide government, industry, university, hospital, and other public health and microbiological laboratories in their development of biosafety policies and programs. They also provide information and recommendations on the design, construction, and commissioning of containment facilities. The guidelines are intended to reduce the incidence of infection and mortality among laboratory workers, as well as to prevent secondary transmission of disease to the public.
Biosafety in the Laboratory is a concise set of practical guidelines for handling and disposing of biohazardous material. The consensus of top experts in laboratory safety, this volume provides the information needed for immediate improvement of safety practices. It discusses high- and low-risk biological agents (including the highest-risk materials handled in labs today), presents the "seven basic rules of biosafety," addresses special issues such as the shipping of dangerous materials, covers waste disposal in detail, offers a checklist for administering laboratory safetyâ€"and more.
Biological safety and biosecurity protocols are essential to the reputation and responsibility of every scientific institution, whether research, academic, or production. Every risk—no matter how small—must be considered, assessed, and properly mitigated. If the science isn't safe, it isn't good. Now in its fifth edition, Biological safety: Principles and Practices remains the most comprehensive biosafety reference. Led by editors Karen Byers and Dawn Wooley, a team of expert contributors have outlined the technical nuts and bolts of biosafety and biosecurity within these pages. This book presents the guiding principles of laboratory safety, including: the identification, assessment, and control of the broad variety of risks encountered in the lab; the production facility; and, the classroom. Specifically, Biological Safety covers protection and control elements—from biosafety level cabinets and personal protection systems to strategies and decontamination methods administrative concerns in biorisk management, including regulations, guidelines, and compliance various aspects of risk assessment covering bacterial pathogens, viral agents, mycotic agents, protozoa and helminths, gene transfer vectors, zooonotic agents, allergens, toxins, and molecular agents as well as decontamination, aerobiology, occupational medicine, and training A resource for biosafety professionals, instructors, and those who work with pathogenic agents in any capacity, Biological safety is also a critical reference for laboratory managers, and those responsible for managing biohazards in a range of settings, including basic and agricultural research, clinical laboratories, the vivarium, field study, insectories, and greenhouses.
This book will serve as a primer for both laboratory and field scientists who are shaping the emerging field of molecular epidemiology. Molecular epidemiology utilizes the same paradigm as traditional epidemiology but uses biological markers to identify exposure, disease or susceptibility. Schulte and Perera present the epidemiologic methods pertinent to biological markers. The book is also designed to enumerate the considerations necessary for valid field research and provide a resource on the salient and subtle features of biological indicators.
Animal cells are the preferred “cell factories” for the production of complex molecules and antibodies for use as prophylactics, therapeutics or diagnostics. Animal cells are required for the correct post-translational processing (including glycosylation) of biopharmaceutical protein products. They are used for the production of viral vectors for gene therapy. Major targets for this therapy include cancer, HIV, arthritis, cardiovascular and CNS diseases and cystic fibrosis. Animal cells are used as in vitro substrates in pharmacological and toxicological studies. This book is designed to serve as a comprehensive review of animal cell culture, covering the current status of both research and applications. For the student or R&D scientist or new researcher the protocols are central to the performance of cell culture work, yet a broad understanding is essential for translation of laboratory findings into the industrial production. Within the broad scope of the book, each topic is reviewed authoritatively by experts in the field to produce state-of-the-art collection of current research. A major reference volume on cell culture research and how it impacts on production of biopharmaceutical proteins worldwide, the book is essential reading for everyone working in cell culture and is a recommended volume for all biotechnology libraries.