Order and Fluctuations in Collective Dynamics of Swimming Bacteria

Order and Fluctuations in Collective Dynamics of Swimming Bacteria

Author: Daiki Nishiguchi

Publisher: Springer Nature

Published: 2020-01-31

Total Pages: 137

ISBN-13: 9813299983

DOWNLOAD EBOOK

This thesis focuses on experimental studies on collective motion using swimming bacteria as model active-matter systems. It offers comprehensive reviews of state-of-the-art theories and experiments on collective motion from the viewpoint of nonequilibrium statistical physics. The author presents his experimental studies on two major classes of collective motion that had been well studied theoretically. Firstly, swimming filamentous bacteria in a thin fluid layer are shown to exhibit true, long-range orientational order and anomalously strong giant density fluctuations, which are considered universal and landmark signatures of collective motion by many numerical and theoretical works but have never been observed in real systems. Secondly, chaotic bacterial turbulence in a three-dimensional dense suspension without any long-range order as described in the first half is demonstrated to be capable of achieving antiferromagnetic vortex order by imposing a small number of constraints with appropriate periodicity. The experimental results presented significantly advance our fundamental understanding of order and fluctuations in collective motion of motile elements and their future applications.


Physical Models of Cell Motility

Physical Models of Cell Motility

Author: Igor S. Aranson

Publisher: Springer

Published: 2015-12-16

Total Pages: 208

ISBN-13: 3319244485

DOWNLOAD EBOOK

This book surveys the most recent advances in physics-inspired cell movement models. This synergetic, cross-disciplinary effort to increase the fidelity of computational algorithms will lead to a better understanding of the complex biomechanics of cell movement, and stimulate progress in research on related active matter systems, from suspensions of bacteria and synthetic swimmers to cell tissues and cytoskeleton.Cell motility and collective motion are among the most important themes in biology and statistical physics of out-of-equilibrium systems, and crucial for morphogenesis, wound healing, and immune response in eukaryotic organisms. It is also relevant for the development of effective treatment strategies for diseases such as cancer, and for the design of bioactive surfaces for cell sorting and manipulation. Substrate-based cell motility is, however, a very complex process as regulatory pathways and physical force generation mechanisms are intertwined. To understand the interplay between adhesion, force generation and motility, an abundance of computational models have been proposed in recent years, from finite element to immerse interface methods and phase field approaches.This book is primarily written for physicists, mathematical biologists and biomedical engineers working in this rapidly expanding field, and can serve as supplementary reading for advanced graduate courses in biophysics and mathematical biology. The e-book incorporates experimental and computer animations illustrating various aspects of cell movement./div


Comprehensive Biophysics

Comprehensive Biophysics

Author:

Publisher: Academic Press

Published: 2012-04-12

Total Pages: 3533

ISBN-13: 0080957188

DOWNLOAD EBOOK

Biophysics is a rapidly-evolving interdisciplinary science that applies theories and methods of the physical sciences to questions of biology. Biophysics encompasses many disciplines, including physics, chemistry, mathematics, biology, biochemistry, medicine, pharmacology, physiology, and neuroscience, and it is essential that scientists working in these varied fields are able to understand each other's research. Comprehensive Biophysics, Nine Volume Set will help bridge that communication gap. Written by a team of researchers at the forefront of their respective fields, under the guidance of Chief Editor Edward Egelman, Comprehensive Biophysics, Nine Volume Set provides definitive introductions to a broad array of topics, uniting different areas of biophysics research - from the physical techniques for studying macromolecular structure to protein folding, muscle and molecular motors, cell biophysics, bioenergetics and more. The result is this comprehensive scientific resource - a valuable tool both for helping researchers come to grips quickly with material from related biophysics fields outside their areas of expertise, and for reinforcing their existing knowledge. Biophysical research today encompasses many areas of biology. These studies do not necessarily share a unique identifying factor. This work unites the different areas of research and allows users, regardless of their background, to navigate through the most essential concepts with ease, saving them time and vastly improving their understanding The field of biophysics counts several journals that are directly and indirectly concerned with the field. There is no reference work that encompasses the entire field and unites the different areas of research through deep foundational reviews. Comprehensive Biophysics fills this vacuum, being a definitive work on biophysics. It will help users apply context to the diverse journal literature offering, and aid them in identifying areas for further research Chief Editor Edward Egelman (E-I-C, Biophysical Journal) has assembled an impressive, world-class team of Volume Editors and Contributing Authors. Each chapter has been painstakingly reviewed and checked for consistent high quality. The result is an authoritative overview which ties the literature together and provides the user with a reliable background information and citation resource


Group Chase and Escape

Group Chase and Escape

Author: Atsushi Kamimura

Publisher: Springer Nature

Published: 2019-12-12

Total Pages: 119

ISBN-13: 9811517312

DOWNLOAD EBOOK

This book presents a unique fusion of two different research topics. One is related to the traditional mathematical problem of chases and escapes. The problem mainly deals with a situation where a chaser pursues an evader to analyze their trajectories and capture time. It dates back more than 300 years and has developed in various directions such as differential games. The other topic is the recently developing field of collective behavior, which investigates origins and properties of emergent behavior in groups of self-driving units. Applications include schools of fish, flocks of birds, and traffic jams. This book first reviews representative topics, both old and new, from these two areas. Then it presents the combined research topic of "group chase and escape", recently proposed by the authors. Although the combination is simple and straightforward, the book describes the emergence of rather intricate behavior, provoking the interest of readers for further developments and applications of related topics.


Colloidal Active Matter

Colloidal Active Matter

Author: Francesc Sagués Mestre

Publisher: CRC Press

Published: 2022-10-07

Total Pages: 308

ISBN-13: 1000684806

DOWNLOAD EBOOK

What do bird flocks, bacterial swarms, cell tissues, and cytoskeletal fluids have in common? They are all examples of active matter. This book explores how scientists in various disciplines, from physics to biology, have collated a solid corpus of experimental designs and theories during the last two decades to decipher active systems. The book addresses, from a multidisciplinary viewpoint, the field of active matter at a colloidal scale. Concepts, experiments, and theoretical models are put side by side to fully illuminate the subtilities of active systems. A large variety of subjects, from microswimmers or driven colloids to self-organized active fluids, are analysed within a unified perspective. Generic collective effects of self-propelled or driven colloids, such as motility-induced flocking, and new paradigms, such as the celebrated concept of active nematics in reconstituted protein-based fluids, are discussed using well-known experimental scenarios and recognized theories. Topics are covered with rigor and in a self-consistent way, reaching both practitioners and newcomers to the field. The diversity of topics and conceptual challenges in active matter have long hampered the chance to explore the field with a general perspective. This monograph, the first single-authored title on active matter, is intended to fill this gap by bridging disparate experimental and theoretical interests from colloidal soft matter to cell biophysics.


Issues in Biophysics and Geophysics Research and Application: 2011 Edition

Issues in Biophysics and Geophysics Research and Application: 2011 Edition

Author:

Publisher: ScholarlyEditions

Published: 2012-01-09

Total Pages: 2696

ISBN-13: 1464964297

DOWNLOAD EBOOK

Issues in Biophysics and Geophysics Research and Application: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Biophysics and Geophysics Research and Application. The editors have built Issues in Biophysics and Geophysics Research and Application: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Biophysics and Geophysics Research and Application in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Biophysics and Geophysics Research and Application: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.


Introduction to Modern Biophysics

Introduction to Modern Biophysics

Author: Mohammad Ashrafuzzaman

Publisher: CRC Press

Published: 2023-12-15

Total Pages: 435

ISBN-13: 1003821634

DOWNLOAD EBOOK

This textbook provides an introduction to the fundamental and applied aspects of biophysics for advanced undergraduate and graduate students of physics, chemistry, and biology. The application of physics principles and techniques in exploring biological systems has long been a tradition in scientific research. Biological systems hold naturally inbuilt physical principles and processes which are popularly explored. Systematic discoveries help us understand the structures and functions of individual biomolecules, biomolecular systems, cells, organelles, tissues, and even the physiological systems of animals and plants. Utilizing a physics- based scientific understanding of biological systems to explore disease is at the forefront of applied scientific research. This textbook covers key breakthroughs in biophysics whilst looking ahead to future horizons and directions of research. It contains models based on both classical and quantum mechanical treatments of biological systems. It explores diseases related to physical alterations in biomolecular structures and organizations alongside drug discovery strategies. It also discusses the cutting- edge applications of nanotechnologies in manipulating nanoprocesses in biological systems. Key Features: • Presents an accessible introduction to how physics principles and techniques can be used to understand biological and biochemical systems. • Addresses natural processes, mutations, and their purposeful manipulation. • Lays the groundwork for vitally important natural scientific, technological, and medical advances. Mohammad Ashrafuzzaman, a biophysicist and condensed matter scientist, is passionate about investigating biological and biochemical processes utilizing physics principles and techniques. He is a professor of biophysics at King Saud University’s Biochemistry Department in the College of Science, Riyadh, Saudi Arabia; the co- founder of MDT Canada Inc., and the founder of Child Life Development Institute, Edmonton, Canada. He has authored Biophysics and Nanotechnology of Ion Channels, Nanoscale Biophysics of the Cell, and Membrane Biophysics. He has also published about 50 peer- reviewed articles and several patents, edited two books, and has been serving on the editorial boards of Elsevier and Bentham Science journals. Dr. Ashrafuzzaman has held research and academic ranks at Bangladesh University of Engineering & Technology, University of Neuchatel (Switzerland), Helsinki University of Technology (Finland), Weill Medical College of Cornell University (USA), and University of Alberta (Canada). During 2013– 2018 he also served as a Visiting Professor at the Departments of Oncology, and Medical Microbiology and Immunology, of the University of Alberta. Dr. Ashrafuzzaman earned his highest academic degree, Doctor of Science (D.Sc.) in condensed matter physics from the University of Neuchatel, Switzerland in 2004.


Princeton Lectures On Biophysics (Volume 1) - Proceedings Of The First Princeton Lectures

Princeton Lectures On Biophysics (Volume 1) - Proceedings Of The First Princeton Lectures

Author: William Bialek

Publisher: World Scientific

Published: 1993-03-10

Total Pages: 426

ISBN-13: 9814553301

DOWNLOAD EBOOK

Many biological phenomena are especially interesting from a physical point of view, and recent developments have made it possible to perform quantitative, 'physics-style' experiments on many different biological systems. In this volume, composed largely of lectures at a summer workshop for students in 1991, many of those emerging problems in biophysics are surveyed, with emphasis on the confrontation between theory and experiment. The topics range from the structure and dynamics of individual biological molecules to the computational strategies of the nervous system.