This book aims to provide the reader with useful information in the realm of biofuels such as biogas, biodiesel and bioethanol. This book is hoped to contribute to the consolidation of knowledge in the different fields. It briefly describes the use of biofuels just to use them as a source of energy. The expected energy produced can be used to replace energy obtained from nonrenewable fossil fuels such as petroleum. The problems caused from burning of fossil fuels such as petroleum, fire wood consumption which leads to deforestation, the health effects of humans as well as environment problems such as global warming, occurs due to the emission of greenhouse gases aspires me to write this book entitled as Biodiesel, Bio-ethanol and Biogas as an Alternative fuels. Generally, this book deals with the process of producing Biogas, Bio-ethanol and Biodiesel besides, the factors affecting the production of all these renewable energy sources. Based on this fact, anyone in the world can buy this book and use it as a reference book, to produce these energy sources from different wastes.
Frontiers in Bioenergy and Biofuels presents an authoritative and comprehensive overview of the possibilities for production and use of bioenergy, biofuels, and coproducts. Issues related to environment, food, and energy present serious challenges to the success and stability of nations. The challenge to provide energy to a rapidly increasing global population has made it imperative to find new technological routes to increase production of energy while also considering the biosphere's ability to regenerate resources. The bioenergy and biofuels are resources that may provide solutions to these critical challenges. Divided into 25 discreet parts, the book covers topics on characterization, production, and uses of bioenergy, biofuels, and coproducts. Frontiers in Bioenergy and Biofuels provides an insight into future developments in each field and extensive bibliography. It will be an essential resource for researchers and academic and industry professionals in the energy field.
Advanced Biofuel Technologies: Present Status, Challenges and Future Prospects deals with important issues such as feed stock availability, technology options, greenhouse gas reduction as seen by life cycle assessment studies, regulations and policies. This book provides readers complete information on the current state of developments in both thermochemical and biochemical processes for advanced biofuels production for the purpose of transportation, domestic and industrial applications. Chapters explore technological innovations in advanced biofuels produced from agricultural residues, algae, lipids and waste industrial gases to produce road transport fuels, biojet fuel and biogas. - Covers technologies and processes of different types of biofuel production - Outlines a selection of different types of renewable feedstocks for biofuel production - Summarizes adequate and balanced coverage of thermochemical and biochemical methods of biomass conversion into biofuel - Includes regulations, policies and lifecycle and techno-economic assessments
By-products of global biodiesel manufacturing are a modern day global fact responsible for igniting a number of year's worldwide intense research activity into human chemical ingenuity. This highly anticipated 2nd Edition depicts how practical limitations posed by glycerol chemistry are solved based on the understanding of the fundamental chemistry of glycerol and by application of catalysis science and technology. The authors report and comment on employable, practical avenues applicable to convert glycerol into value added products of mass consumption. The best-selling reference book in the.
Handbook of Biofuels Production, Second Edition, discusses advanced chemical, biochemical, and thermochemical biofuels production routes that are fast being developed to address the global increase in energy usage. Research and development in this field is aimed at improving the quality and environmental impact of biofuels production, as well as the overall efficiency and output of biofuels production plants. The book provides a comprehensive and systematic reference on the range of biomass conversion processes and technology. Key changes for this second edition include increased coverage of emerging feedstocks, including microalgae, more emphasis on by-product valorization for biofuels' production, additional chapters on emerging biofuel production methods, and discussion of the emissions associated with biofuel use in engines. The editorial team is strengthened by the addition of two extra members, and a number of new contributors have been invited to work with authors from the first edition to revise existing chapters, thus offering fresh perspectives. - Provides systematic and detailed coverage of the processes and technologies being used for biofuel production - Discusses advanced chemical, biochemical, and thermochemical biofuels production routes that are fast being developed to address the global increase in energy usage - Reviews the production of both first and second generation biofuels - Addresses integrated biofuel production in biorefineries and the use of waste materials as feedstocks
Bioethanol is one of the main biofuels currently used as a petroleum-substitute in transport applications. However, conflicts over food supply and land use have made its production and utilisation a controversial topic. Second generation bioalcohol production technology, based on (bio)chemical conversion of non-food lignocellulose, offers potential advantages over existing, energy-intensive bioethanol production processes. Food vs. fuel pressures may be reduced by utilising a wider range of lignocellulosic biomass feedstocks, including energy crops, cellulosic residues, and, particularly, wastes.Bioalcohol production covers the process engineering, technology, modelling and integration of the entire production chain for second generation bioalcohol production from lignocellulosic biomass. Primarily reviewing bioethanol production, the book's coverage extends to the production of longer-chain bioalcohols which will be elemental to the future of the industry.Part one reviews the key features and processes involved in the pretreatment and fractionation of lignocellulosic biomass for bioalcohol production, including hydrothermal and thermochemical pretreatment, and fractionation to separate out valuable process feedstocks. Part two covers the hydrolysis (saccharification) processes applicable to pretreated feedstocks. This includes both acid and enzymatic approaches and also importantly covers the development of particular enzymes to improve this conversion step. This coverage is extended in Part three, with chapters reviewing integrated hydrolysis and fermentation processes, and fermentation and co-fermentation challenges of lignocellulose-derived sugars, as well as separation and purification processes for bioalcohol extraction.Part four examines the analysis, monitoring and modelling approaches relating to process and quality control in the pretreatment, hydrolysis and fermentation steps of lignocellulose-to-bioalcohol production. Finally, Part five discusses the life-cycle assessment of lignocellulose-to-bioalcohol production, as well as the production of valuable chemicals and longer-chain alcohols from lignocellulosic biomass.With its distinguished international team of contributors, Bioalcohol production is a standard reference for fuel engineers, industrial chemists and biochemists, plant scientists and researchers in this area. - Provides an overview of the life-cycle assessment of lignocelluloses-to-bioalcohol production - Reviews the key features and processes involved in the pre-treatment and fractionation of lignocellulosic biomass for bioalcohol production - Examines the analysis, monitoring and modelling approaches relating to process and quality control in pre-treatment, hydrolysis and fermentation
In the United States, we have come to depend on plentiful and inexpensive energy to support our economy and lifestyles. In recent years, many questions have been raised regarding the sustainability of our current pattern of high consumption of nonrenewable energy and its environmental consequences. Further, because the United States imports about 55 percent of the nation's consumption of crude oil, there are additional concerns about the security of supply. Hence, efforts are being made to find alternatives to our current pathway, including greater energy efficiency and use of energy sources that could lower greenhouse gas (GHG) emissions such as nuclear and renewable sources, including solar, wind, geothermal, and biofuels. The United States has a long history with biofuels and the nation is on a course charted to achieve a substantial increase in biofuels. Renewable Fuel Standard evaluates the economic and environmental consequences of increasing biofuels production as a result of Renewable Fuels Standard, as amended by EISA (RFS2). The report describes biofuels produced in 2010 and those projected to be produced and consumed by 2022, reviews model projections and other estimates of the relative impact on the prices of land, and discusses the potential environmental harm and benefits of biofuels production and the barriers to achieving the RFS2 consumption mandate. Policy makers, investors, leaders in the transportation sector, and others with concerns for the environment, economy, and energy security can rely on the recommendations provided in this report.
Written as a practical introduction to biogas plant design and operation, this book fills a huge gap by presenting a systematic guide to this emerging technology -- information otherwise only available in poorly intelligible reports by US governmental and other official agencies. The author draws on teaching material from a university course as well as a wide variety of industrial biogas projects he has been involved with, thus combining didactical skill with real-life examples. Alongside biological and technical aspects of biogas generation, this timely work also looks at safety and legal aspects as well as environmental considerations.