Bioelectrochemistry I

Bioelectrochemistry I

Author: G. Milazzo

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 349

ISBN-13: 146133697X

DOWNLOAD EBOOK

This is the first course devoted to bioelectrochemistry held within the frame work of the International School of Biophysics. Although this branch of scientific research is already about two centuries old, as a truly independent one it has been in a stage of lively development since only a few decades ago and this is why a first course at the E. Majorana Center was devoted to it. Since bioelectrochemistry consists of many sub-fields, it is impossible to include, even superficially, all of them in a short course lasting just a week, and therefore the chapter of redox-reactions was chosen for this first course as being most general in character. But even restricting the course to redox-reactions, only a few subjects could be included and therefore the choice among them was made considering the most general guidelines that could serve as a basis for the further study of individual problems. In this way we hope to give a sound basis to the study of and to stimulate further interest in this branch of both biological and physical chemistry. This dual interdisciplinary approach is, on the other hand, unavoidable if a more rigorous and logical attack on biological problems in living bodies is to be carried ahead. VII CONTENTS ix Symbols and acronyms Opening address A. BORSELLINO 1 Bioelectrochemistry and bioenergetics: an interdisciplinary survey G. MILAZZO 5 General criteria for the fulfilment of redox reactions R. BUVET 15 Photosynthesis - selected topics H.


Bioelectrochemistry

Bioelectrochemistry

Author: Serge Cosnier

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2019-03-04

Total Pages: 300

ISBN-13: 3110570521

DOWNLOAD EBOOK

Bioelectrochemistry is a fast growing field linking together electrochemistry, biochemistry, medicinal chemistry and analytical chemistry. The current book outlines the recent progress in the area and the applications in biological materials design and bioenergy, covering in particular biosensors, bioelectronic devices, biofuel cells, biodegradable batteries and biomolecule-based computing.


Bioelectrochemistry III

Bioelectrochemistry III

Author: Martin Blank

Publisher: Springer Science & Business Media

Published: 2013-11-21

Total Pages: 330

ISBN-13: 1475794592

DOWNLOAD EBOOK

This book contains aseries of review papers related to the lectures given at the Third Course on Bioelectrochemistry held at Erice in November 1988, in the framework of the International School of Biophysics. The topics covered by this course, "Charge Separation Across Biomembranes, " deal with the electrochemical aspects of some basic phenomena in biological systems, such as transport of ions, ATP synthesis, formation and maintenance of ionic and protonic gradients. In the first part of the course some preliminary lectures introduce the students to the most basic phenomena and technical aspects of membrane bioelectrochemistry. The remaining part of the course is devoted to the description of a selected group of membrane-enzyme systems, capable of promoting, or exploiting, the processes of separation of electrically charged entities (electrons or ions) across the membrane barrier. These systems are systematically discussed both from a structural and functional point of view. The effort of the many distinguished lecturers who contributed to the course is aimed at offering a unifying treatement of the electrogenic systems operating in biological membranes, underlying the fundamental differences in the molecular mechanisms of charge translocation.


Bioelectrochemistry II

Bioelectrochemistry II

Author: G. Milazzo

Publisher: Springer Science & Business Media

Published: 2013-03-07

Total Pages: 530

ISBN-13: 1461309514

DOWNLOAD EBOOK

This book contains the lectures of the second course devoted to bioelectro chemistry, held within the framework of the International School of Biophysics. In this course another very large field of bioelectrochemistry, i. e. the field of Membrane Phenomena, was considered, which itself consists of several different, but yet related subfields. Here again, it can be easily stated that it is impossible to give a complete and detailed picture of all membrane phenomena of biological interest in a short course of about one and half week. Therefore the same philosophy, as the one of the first course, was followed, to select a series of lectures at postgraduate level, giving a synthesis of several membrane phenomena chosen among the most'important ones. These lectures should show the large variety of membrane-regulated events occurring in living bodies, and serve as sound interdisciplinary basis to start a special ized study of biological phenomena, for which the investigation using the dual approach, physico-chemical and biological, is unavoidable. Since, as already mentioned, it was impossible to exhaust, even roughly, is a short course like this, the presentation and introductory treatment of the extremely large variety of membrane phenomena, it can be expected that the third course will continue the subject of membrane phenomena deepening some ones presented in this course and introducing some new ones. vii CONTENTS Symbols and acronyms IX Opening address G. MILAZZO 1 Structure of biological membranes and of their models I J . A. HAYWARD et al.


Advances in Bioelectrochemistry Volume 5

Advances in Bioelectrochemistry Volume 5

Author: Frank N. Crespilho

Publisher: Springer Nature

Published: 2022-09-18

Total Pages: 205

ISBN-13: 3031108329

DOWNLOAD EBOOK

This book presents a collection of chapters on modern bioelectrochemistry, showing different aspects of emerging techniques and materials, biodevice design and reactions. The chapters provide relevant bibliographic information for researchers and students interested in electrochemical impedance spectroscopy applied in biodevices, trends, and validation on impedimetric immunosensors in the application of routine analysis, electrochemical–surface plasmon bioanalytics and carbon nanomaterials in electrochemical biodevices, insights on inorganic complexes and metal based for biomarkers sensors, bioelectrodes and cascade reactions and field effect-based reactions.


Bioelectrochemical Systems

Bioelectrochemical Systems

Author: Korneel Rabaey

Publisher: IWA Publishing

Published: 2009-12-01

Total Pages: 525

ISBN-13: 184339233X

DOWNLOAD EBOOK

In the context of wastewater treatment, Bioelectrochemical Systems (BESs) have gained considerable interest in the past few years, and several BES processes are on the brink of application to this area. This book, written by a large number of world experts in the different sub-topics, describes the different aspects and processes relevant to their development. Bioelectrochemical Systems (BESs) use micro-organisms to catalyze an oxidation and/or reduction reaction at an anodic and cathodic electrode respectively. Briefly, at an anode oxidation of organic and inorganic electron donors can occur. Prime examples of such electron donors are waste organics and sulfides. At the cathode, an electron acceptor such as oxygen or nitrate can be reduced. The anode and the cathode are connected through an electrical circuit. If electrical power is harvested from this circuit, the system is called a Microbial Fuel Cell; if electrical power is invested, the system is called a Microbial Electrolysis Cell. The overall framework of bio-energy and bio-fuels is discussed. A number of chapters discuss the basics – microbiology, microbial ecology, electrochemistry, technology and materials development. The book continues by highlighting the plurality of processes based on BES technology already in existence, going from wastewater based reactors to sediment based bio-batteries. The integration of BESs into existing water or process lines is discussed. Finally, an outlook is provided of how BES will fit within the emerging biorefinery area.


Bioelectrochemistry

Bioelectrochemistry

Author: Philip N. Bartlett

Publisher: John Wiley & Sons

Published: 2008-05-27

Total Pages: 494

ISBN-13: 0470753838

DOWNLOAD EBOOK

Bioelectrochemistry: Fundamentals, Experimental Techniques and Application, covers the fundamental aspects of the chemistry, physics and biology which underlie this subject area. It describes some of the different experimental techniques that can be used to study bioelectrochemical problems and it describes various applications of biolelectrochemisty including amperometric biosensors, immunoassays, electrochemistry of DNA, biofuel cells, whole cell biosensors, in vivo applications and bioelectrosynthesis. By bringing together these different aspects, this work provides a unique source of information in this area, approaching the subject from a cross-disciplinary viewpoint.


Bioelectrochemical Interface Engineering

Bioelectrochemical Interface Engineering

Author: R. Navanietha Krishnaraj

Publisher: John Wiley & Sons

Published: 2019-09-24

Total Pages: 560

ISBN-13: 1119538548

DOWNLOAD EBOOK

An introduction to the fundamental concepts and rules in bioelectrochemistry and explores latest advancements in the field Bioelectrochemical Interface Engineering offers a guide to this burgeoning interdisciplinary field. The authors—noted experts on the topic—present a detailed explanation of the field’s basic concepts, provide a fundamental understanding of the principle of electrocatalysis, electrochemical activity of the electroactive microorganisms, and mechanisms of electron transfer at electrode-electrolyte interfaces. They also explore the design and development of bioelectrochemical systems. The authors review recent advances in the field including: the development of new bioelectrochemical configurations, new electrode materials, electrode functionalization strategies, and extremophilic electroactive microorganisms. These current developments hold the promise of powering the systems in remote locations such as deep sea and extra-terrestrial space as well as powering implantable energy devices and controlled drug delivery. This important book: • Explores the fundamental concepts and rules in bioelectrochemistry and details the latest advancements • Presents principles of electrocatalysis, electroactive microorganisms, types and mechanisms of electron transfer at electrode-electrolyte interfaces, electron transfer kinetics in bioelectrocatalysis, and more • Covers microbial electrochemical systems and discusses bioelectrosynthesis and biosensors, and bioelectrochemical wastewater treatment • Reviews microbial biosensor, microfluidic and lab-on-chip devices, flexible electronics, and paper and stretchable electrodes Written for researchers, technicians, and students in chemistry, biology, energy and environmental science, Bioelectrochemical Interface Engineering provides a strong foundation to this advanced field by presenting the core concepts, basic principles, and newest advances.


Electron-Based Bioscience and Biotechnology

Electron-Based Bioscience and Biotechnology

Author: Masaharu Ishii

Publisher: Springer Nature

Published: 2020-09-07

Total Pages: 225

ISBN-13: 9811547637

DOWNLOAD EBOOK

This book offers a comprehensive introduction to electron-based bioscience, biotechnology, and biocorrosion. It both explains the importance of electron flow during metabolic processes in microorganisms and provides valuable insights into emerging applications in various fields. In the opening section, readers will find up-to-date information on topics such as electron transfer reactions, extracellular electron transfer mechanisms, direct interspecies electron transfer, and electron uptake by sulfate-reducing bacteria. The focus then shifts to state-of-the-art advances and applications in the field of biotechnology. Here, the coverage encompasses e.g. progress in understanding electrochemical interactions between microorganisms and conductive particles, enzymatic reactions and their application in the bioproduction of useful chemicals, and the importance of redox balance for fatty acid production. In closing, the book addresses various aspects of the complex phenomenon of microbiologically induced corrosion, highlighting novel insights from the fields of electromicrobiology and electrochemistry and their implications.


Biofuel Cells

Biofuel Cells

Author: Shaojun Dong

Publisher: Elsevier

Published: 2024-07-18

Total Pages: 410

ISBN-13: 0443138362

DOWNLOAD EBOOK

Biofuel Cells: The Design and Application of Biological Catalysts presents a detailed examination of biofuel cells, from their fundamentals and basic principles through to the latest technological, materials, and bioengineering developments. The book follows a clear, step-by-step chapter structure that takes the reader through each stage of the design, construction, and operation of BFC-based devices. Chapters 1 and 2 provide a detailed review of the fundamentals and basic principles of microbial and biofuel cells, including the electrochemistry, materials and mechanics, and applications. Chapter 3 provides an in-depth examination of catalyst evolution and chapter 4 explains all aspects of electron transfer in enzymatic biofuel cells. Chapter 5 reviews all types of hybrid biofuel cell, including fabrication and design strategies for thermoelectric and triboelectric energy devices. In chapter 6 advanced manufacture techniques for biofuel cells and bio-devices are explained, including the working principles and methodologies for printing, microfluidics, fiber, microneedle, and others. Finally, chapter 7 explores the diverse applications of biofuel cells and bio-devices, from biosensors and bioelectronics to capacitive biofuel cells. Chapters are supported by computational tools, working manuals for the techniques discussed, and detailed schematics and flowcharts for BCF fabrication. Biofuel Cells: The Design and Application of Biological Catalysts is an invaluable resource for graduate students and early career researchers interested in any aspect of biofuel cells and bio-devices and is specifically designed to benefit students from multiple backgrounds, including chemical engineering, electrical engineering, mechanical engineering, and biotechnology. Explains the mechanisms of enzymatic and microbial biocatalysts, electron transfer mechanisms, and bioengineering for biocatalysts in BFCs Explores the latest developments in biofuel cell technology, including printed biofuel cells, fiber biofuel cells, as well as other manufacturing methods Reviews the versatile applications of biofuel cells, including bio-hybrid systems, self-powered biosensors, and flexible bioelectronics