Bio-Succinic Acid Production from Glucose - Cost Analysis - Succinic Acid E25A

Bio-Succinic Acid Production from Glucose - Cost Analysis - Succinic Acid E25A

Author: Intratec

Publisher: Intratec Solutions

Published: 2019-09-17

Total Pages: 102

ISBN-13:

DOWNLOAD EBOOK

This report presents a cost analysis of bio-based Succinic Acid production from glucose syrup using a fermentation process. The process examined is similar to BioAmber process. In this process, a 70 wt% glucose-water syrup is used as raw material. This report was developed based essentially on the following reference(s): US 20130072714 and WO 2013039647 Patents, both issued to BioAmber in 2013 Keywords: Dextrose, Butanedioic Acid, Anaerobic Fermentation, Applied Carbochemicals, Michigan State University


Bio-Succinic Acid Production from Glucose - Cost Analysis - Succinic Acid E25A

Bio-Succinic Acid Production from Glucose - Cost Analysis - Succinic Acid E25A

Author: Intratec

Publisher: Intratec

Published: 2017-06-01

Total Pages: 102

ISBN-13: 1641480351

DOWNLOAD EBOOK

This report presents a cost analysis of bio-based Succinic Acid production from glucose syrup using a fermentation process The process examined is similar to BioAmber process. In this process, a 70 wt% glucose-water syrup is used as raw material. This report was developed based essentially on the following reference(s): US 20130072714 and WO 2013039647 Patents, both issued to BioAmber in 2013 Keywords: Dextrose, Butanedioic Acid, Anaerobic Fermentation, Applied Carbochemicals, Michigan State University


Bio-Succinic Acid Production from Glucose - Cost Analysis - Succinic Acid E22A

Bio-Succinic Acid Production from Glucose - Cost Analysis - Succinic Acid E22A

Author: Intratec

Publisher: Intratec

Published: 2019-09-17

Total Pages: 102

ISBN-13:

DOWNLOAD EBOOK

This report presents a cost analysis of bio-based Succinic Acid production from glucose syrup using a fermentation process. The process examined is similar to Michigan Biotechnology Institute (MBI) process. In this process, electrodialysis is used in Succinic Acid recovery from the fermentation broth. The process uses a 70 wt% glucose-water syrup as raw material. This report was developed based essentially on the following reference(s): US Patent 20140093925 and US Patent 6265190, both issued to Michigan Biotechnology Institute in 2014 and 2001, respectively Keywords: Butanedioic acid, Dextrose, Anaerobic Fermentation, Sodium Succinate, Sodium Hydroxide


Bio-Succinic Acid Production from Glucose - Cost Analysis - Succinic Acid E26A

Bio-Succinic Acid Production from Glucose - Cost Analysis - Succinic Acid E26A

Author: Intratec

Publisher: Intratec

Published: 2019-09-17

Total Pages: 102

ISBN-13:

DOWNLOAD EBOOK

This report presents a cost analysis of bio-based Succinic Acid production from glucose syrup using a fermentation process. The process examined is similar to Reverdia process. In this process, a 70 wt% glucose-water syrup is used as raw material. This report was developed based essentially on the following reference(s): US 9012187 and US 20120040422 Patents, both issued to DSM in 2015 and 2012, respectively Keywords: Dextrose, Butanedioic Acid, Anaerobic Fermentation, DSM, Roquette Freres, Rice University, Biosuccinium


Bio-Succinic Acid Production from Glucose - Cost Analysis - Succinic Acid E24A

Bio-Succinic Acid Production from Glucose - Cost Analysis - Succinic Acid E24A

Author: Intratec

Publisher: Intratec

Published: 2019-09-17

Total Pages: 102

ISBN-13:

DOWNLOAD EBOOK

This report presents a cost analysis of bio-based Succinic Acid production from glucose syrup using a fermentation process. The process examined is similar to Myriant process. In this process, a 70 wt% glucose-water syrup is used as raw material and ammonium sulfate is generated as by-product. This report was developed based essentially on the following reference(s): US Patent 8778656, issued to Myriant in 2014 Keywords: Dextrose, Butanedioic Acid, Anaerobic Fermentation


Bio-Succinic Acid Production from Raw Sugar - Cost Analysis - Succinic Acid E11B

Bio-Succinic Acid Production from Raw Sugar - Cost Analysis - Succinic Acid E11B

Author: Intratec

Publisher: Intratec Solutions

Published: 2017-06-01

Total Pages: 52

ISBN-13: 1641481323

DOWNLOAD EBOOK

This report presents a cost analysis of bio-based Succinic Acid production from raw sugar using a fermentation process. The process examined is similar to Korea Advanced Institute of Science & Technology (KAIST) process. In this process, raw sugar (sucrose) is diluted and sucrose is hydrolyzed into glucose and fructose (invert sugars). The invert sugars are then fermented to produce Succinic Acid. This report examines one-time costs associated with the construction of a Germany-based plant and the continuing costs associated with the daily operation of such a plant. More specifically, it discusses: * Capital Investment, broken down by: - Total fixed capital required, divided in production unit (ISBL); infrastructure (OSBL) and contingency - Alternative perspective on the total fixed capital, divided in direct costs, indirect costs and contingency - Working capital and costs incurred during industrial plant commissioning and start-up * Production cost, broken down by: - Manufacturing variable costs (raw materials, utilities) - Manufacturing fixed costs (maintenance costs, operating charges, plant overhead, local taxes and insurance) - Depreciation and corporate overhead costs * Raw materials consumption, products generation and labor requirements * Process block flow diagram and description of industrial site installations (production unit and infrastructure) This report was developed based essentially on the following reference(s): WO Patent 2009082050, issued to Korea Advanced Institute of Science & Technology (KAIST) in 2009 Keywords: Butanedioic Acid, Dicarboxylic Acid


Bio-Succinic Acid Production from Raw Sugar - Cost Analysis - Succinic Acid E12B

Bio-Succinic Acid Production from Raw Sugar - Cost Analysis - Succinic Acid E12B

Author: Intratec

Publisher: Intratec

Published: 2019-09-17

Total Pages: 102

ISBN-13:

DOWNLOAD EBOOK

This report presents a cost analysis of bio-based Succinic Acid production from raw sugar using a fermentation process. The process examined is similar to Michigan Biotechnology Institute (MBI) process. In this process, raw sugar (sucrose) is diluted and sucrose is hydrolyzed into glucose and fructose (invert sugars). The invert sugars are then fermented to produce Succinic Acid. Electrodialysis is used in Succinic Acid recovery from the fermentation broth. This report was developed based essentially on the following reference(s): US Patent 20140093925 and US Patent 6265190, both issued to Michigan Biotechnology Institute in 2014 and 2001, respectively Keywords: Butanedioic acid, Dextrose, Anaerobic Fermentation, Sodium Succinate, Sodium Hydroxide


Bio-Succinic Acid Production from Raw Sugar - Cost Analysis - Succinic Acid E15B

Bio-Succinic Acid Production from Raw Sugar - Cost Analysis - Succinic Acid E15B

Author: Intratec

Publisher: Intratec

Published: 2019-09-17

Total Pages: 102

ISBN-13:

DOWNLOAD EBOOK

This report presents a cost analysis of bio-based Succinic Acid production from raw sugar using a fermentation process. The process examined is similar to Reverdia process. In this process, raw sugar (sucrose) is diluted and sucrose is hydrolyzed into glucose and fructose (invert sugars). The invert sugars are then fermented to produce Succinic Acid. This report was developed based essentially on the following reference(s): US 9012187 and US 20120040422 Patents, both issued to DSM in 2015 and 2012, respectively Keywords: Dextrose, Butanedioic Acid, Anaerobic Fermentation, DSM, Roquette Freres, Rice University, Biosuccinium


Bio-Succinic Acid Production from Raw Sugar - Cost Analysis - Succinic Acid E14B

Bio-Succinic Acid Production from Raw Sugar - Cost Analysis - Succinic Acid E14B

Author: Intratec

Publisher: Intratec

Published: 2019-09-17

Total Pages: 102

ISBN-13:

DOWNLOAD EBOOK

This report presents a cost analysis of bio-based Succinic Acid production from raw sugar using a fermentation process. The process examined is similar to BioAmber process. In this process, raw sugar (sucrose) is diluted and sucrose is hydrolyzed into glucose and fructose (invert sugars). The invert sugars are then fermented to produce Succinic Acid. This report was developed based essentially on the following reference(s): US 20130072714 and WO 2013039647 Patents, both issued to BioAmber in 2013 Keywords: Dextrose, Butanedioic Acid, Anaerobic Fermentation, Applied Carbochemicals, Michigan State University


Succinic Acid Production Cost Analysis - Overview - Succinic Acid AA01

Succinic Acid Production Cost Analysis - Overview - Succinic Acid AA01

Author: Intratec

Publisher: Intratec Solutions

Published: 2016-03-01

Total Pages: 52

ISBN-13: 1945324236

DOWNLOAD EBOOK

This report presents alternatives for producing Succinic Acid from different feedstocks and a cost comparison of these alternatives, across different countries. More specifically, the report compares the costs of Succinic Acid production through the following pathways: * Pathway 1: Succinic Acid Production from Maleic Anhydride * Pathway 2: Bio-Succinic Acid Production from Crude Glycerol via Fermentation * Pathway 3: Bio-Succinic Acid Production from Raw Sugar via Fermentation In Pathway 1, Succininc Acid is produced via maleic anhydride hydrogenation. Pathways 2 and 3 are biochemical paths that use renewable feedstocks in the production of Bio-Succinic Acid. The glycerol used in Pathway 2 is obtained as by-product of biodiesel plants. The analysis presented in this report includes: * A comparison of the economic potential of the pathways listed above in several countries, comprising: * Comparative analysis of capital costs * Comparative analysis of production costs * Comparison between product price and raw materials costs of each pathway * An overview of each production pathway, including: * Raw material(s) consumption figures and product(s) generated * Related technology licensors and block flow diagram of representative industrial processes Keywords: Hydrogenation, Hydration, Sucrose, Sugar Inversion, Anaerobic Fermentation, BioAmber, Myriant, Reverdia, Succinity, DSM