Nature is the world's foremost designer. With billions of years of experience and boasting the most extensive laboratory available, it conducts research in every branch of engineering and science. Nature's designs and capabilities have always inspired technology, from the use of tongs and tweezers to genetic algorithms and autonomous legged robots.
Biomimetic engineering takes the principles of biological organisms and copies, mimics or adapts these in the design and development of new materials and technologies. Biomimetic Technologies reviews the key materials and processes involved in this groundbreaking field, supporting theoretical background by outlining a range of applications. Beginning with an overview of the key principles and materials associated with biomimetic technologies in Part One, the book goes on to explore biomimetic sensors in more detail in Part Two, with bio-inspired tactile, hair-based, gas-sensing and sonar systems all reviewed. Biomimetic actuators are then the focus of Part Three, with vision systems, tissue growth and muscles all discussed. Finally, a wide range of applications are investigated in Part Four, where biomimetic technology and artificial intelligence are reviewed for such uses as bio-inspired climbing robots and multi-robot systems, microrobots with CMOS IC neural networks locomotion control, central pattern generators (CPG's) and biologically inspired antenna arrays. - Includes a solid overview of modern artificial intelligence as background to the principles of biomimetic engineering - Reviews a selection of key bio-inspired materials and sensors, highlighting their current strengths and future potential - Features cutting-edge examples of biomimetic technologies employed for a broad range of applications
A comprehensive introduction to new approaches in artificial intelligence and robotics that are inspired by self-organizing biological processes and structures. New approaches to artificial intelligence spring from the idea that intelligence emerges as much from cells, bodies, and societies as it does from evolution, development, and learning. Traditionally, artificial intelligence has been concerned with reproducing the abilities of human brains; newer approaches take inspiration from a wider range of biological structures that that are capable of autonomous self-organization. Examples of these new approaches include evolutionary computation and evolutionary electronics, artificial neural networks, immune systems, biorobotics, and swarm intelligence—to mention only a few. This book offers a comprehensive introduction to the emerging field of biologically inspired artificial intelligence that can be used as an upper-level text or as a reference for researchers. Each chapter presents computational approaches inspired by a different biological system; each begins with background information about the biological system and then proceeds to develop computational models that make use of biological concepts. The chapters cover evolutionary computation and electronics; cellular systems; neural systems, including neuromorphic engineering; developmental systems; immune systems; behavioral systems—including several approaches to robotics, including behavior-based, bio-mimetic, epigenetic, and evolutionary robots; and collective systems, including swarm robotics as well as cooperative and competitive co-evolving systems. Chapters end with a concluding overview and suggested reading.
Bioinspired Materials for Medical Applications examines the inspiration of natural materials and their interpretation as modern biomaterials. With a strong focus on therapeutic and diagnostic applications, the book also examines the development and manipulation of bioinspired materials in regenerative medicine. The first set of chapters is heavily focused on bioinspired solutions for the delivery of drugs and therapeutics that also offer information on the fundamentals of these materials. Chapters in part two concentrate on bioinspired materials for diagnosis applications with a wide coverage of sensor and imaging systems With a broad coverage of the applications of bioinspired biomaterials, this book is a valuable resource for biomaterials researchers, clinicians, and scientists in academia and industry, and all those who wish to broaden their knowledge in the allied field. - Explores how materials designed and produced with inspiration from nature can be used to enhance man-made biomaterials and medical devices - Brings together the two fields of biomaterials and bioinspired materials - Written by a world-class team of research scientists, engineers, and clinicians
Nature is the world's foremost designer. With billions of years of experience and boasting the most extensive laboratory available, it conducts research in every branch of engineering and science. Nature's designs and capabilities have always inspired technology, from the use of tongs and tweezers to genetic algorithms and autonomous legged robots. Taking a systems perspective rather than focusing narrowly on materials or chemistry aspects, Biomimetics: Biologically Inspired Technologies examines the field from every angle. The book contains pioneering approaches to biomimetics including a new perspective on the mechanization of cognition and intelligence, as well as defense and attack strategies in nature, their applications, and potential. It surveys the field from modeling to applications and from nano- to macro-scales, beginning with an introduction to principles of using biology to inspire designs as well as biological mechanisms as models for technology. This innovative guide discusses evolutionary robotics; genetic algorithms; molecular machines; multifunctional, biological-, and nano- materials; nastic structures inspired by plants; and functional surfaces in biology. Looking inward at biological systems, the book covers the topics of biomimetic materials, structures, control, cognition, artificial muscles, biosensors that mimic senses, artificial organs, and interfaces between engineered and biological systems. The final chapter contemplates the future of the field and outlines the challenges ahead. Featuring extensive illustrations, including a 32-page full-color insert, Biomimetics: Biologically Inspired Technologies provides unmatched breadth of scope as well as lucid illumination of this promising field.
From simple cases such as hook and latch attachments found in Velcro to articulated-wing flying vehicles, biology often has been used to inspire many creative design ideas. The scientific challenge now is to transform the paradigm into a repeatable and scalable methodology. Biologically Inspired Design explores computational techniques and tools that can help integrate the method into design practice. With an inspiring foreword from Janine Benyus, Biologically Inspired Design contains a dozen chapters written by some of the leading scholars in the transdisciplinary field of bioinspired design, such as Frank Fish, Julian Vincent and Jeannette Yen from biology, and Amaresk Chakrabarti, Satyandra Gupta and Li Shu from engineering. Based in part on discussions at two workshops sponsored by the United States National Science Foundation, this volume introduces and develops several methods and tools for bioinspired design including: Information-processing theories, Natural language techniques, Knowledge-based tools, and Functional approaches and Pedagogical techniques. By exploring these fundamental theories, techniques and tools for supporting biologically inspired design, this volume provides a comprehensive resource for design practitioners wishing to explore the paradigm, an invaluable guide to design educators interested in teaching the method, and a preliminary reading for design researchers wanting to investigate bioinspired design.
Human Modelling for Bio-inspired Robotics: Mechanical Engineering in Assistive Technologies presents the most cutting-edge research outcomes in the area of mechanical and control aspects of human functions for macro-scale (human size) applications. Intended to provide researchers both in academia and industry with key content on which to base their developments, this book is organized and written by senior experts in their fields. Human Modeling for Bio-Inspired Robotics: Mechanical Engineering in Assistive Technologies offers a system-level investigation into human mechanisms that inspire the development of assistive technologies and humanoid robotics, including topics in modelling of anatomical, musculoskeletal, neural and cognitive systems, as well as motor skills, adaptation and integration. Each chapter is written by a subject expert and discusses its background, research challenges, key outcomes, application, and future trends. This book will be especially useful for academic and industry researchers in this exciting field, as well as graduate-level students to bring them up to speed with the latest technology in mechanical design and control aspects of the area. Previous knowledge of the fundamentals of kinematics, dynamics, control, and signal processing is assumed. - Presents the most recent research outcomes in the area of mechanical and control aspects of human functions for macro-scale (human size) applications - Covers background information and fundamental concepts of human modelling - Includes modelling of anatomical, musculoskeletal, neural and cognitive systems, as well as motor skills, adaptation, integration, and safety issues - Assumes previous knowledge of the fundamentals of kinematics, dynamics, control, and signal processing
Biomimetic devices are designed and produced by materials, structures, and systems that are modelled on biological entities and processes. These devices are used to synthesize novel materials and their functions at the multiscale level for various applications. Molecular computing biological devices play a key role in the logical processing of the cellular machinery of all living organisms. This book includes information on both biomedical and technological applications of bioactive devices for hard tissue regeneration; design of chip-based disease diagnostic platforms; neuromorphic computing biomaterials that transfer techniques of neuroscience to a silicon chip; various top-down and bottom-up designs; and electrical characterization and transport mechanisms of DNA as nanowires.
“Young readers will be captivated by the contemporary inventors and inventions featured, and inspired to incorporate biomimicry into their own designs.” —Miranda Paul, author of One Plastic Bag and Water is Water Who's the best teacher for scientists, engineers, AND designers? Mother nature, of course! When an inventor is inspired by nature for a new creation, they are practicing something called biomimicry. Meet ten real-life scientists, engineers, and designers who imitate plants and animals to create amazing new technology. An engineer shapes the nose of his train like a kingfisher's beak. A scientist models her solar cell on the mighty leaf. Discover how we copy nature's good ideas to solve real-world problems! WINNER AAAS/Subaru SB&F Prize for Excellence in Science Books A National Science Teacher Association Best STEM Book “Mimic Makers reveals marvels of engineering inspired by nature with images that invite careful observation and explanations that are expressive, but never over simplified.” —Kim Parfitt, AP Biology and Environmental Science teacher, curriculum developer for Howard Hughes Medical Institute Biointeractive, and recipient of the Presidential Award for Excellence in Science and Math Teaching. “Amazing! . . . Love that the book features the scientists and inventors, and that there is a diverse set of them. —Janine Benyus, co-founder of the Biomimicry Institute
Master simple to advanced biomaterials and structures with this essential text. Featuring topics ranging from bionanoengineered materials to bio-inspired structures for spacecraft and bio-inspired robots, and covering issues such as motility, sensing, control and morphology, this highly illustrated text walks the reader through key scientific and practical engineering principles, discussing properties, applications and design. Presenting case studies for the design of materials and structures at the nano, micro, meso and macro-scales, and written by some of the leading experts on the subject, this is the ideal introduction to this emerging field for students in engineering and science as well as researchers.