Bifurcation and Buckling in Structures

Bifurcation and Buckling in Structures

Author: Kiyohiro Ikeda

Publisher: CRC Press

Published: 2021-12-30

Total Pages: 278

ISBN-13: 1000508579

DOWNLOAD EBOOK

Bifurcation and Buckling in Structures describes the theory and analysis of bifurcation and buckling in structures. Emphasis is placed on a general procedure for solving nonlinear governing equations and an analysis procedure related to the finite-element method. Simple structural examples using trusses, columns, and frames illustrate the principles. Part I presents fundamental issues such as the general mathematical framework for bifurcation and buckling, procedures for the buckling load/mode analyses, and numerical analysis procedures to trace the solution curves and switch to bifurcation solutions. Advanced topics include asymptotic theory of bifurcation and bifurcation theory of symmetric systems. Part II deals with buckling of perfect and imperfect structures. An overview of the member buckling of columns and beams is provided, followed by the buckling analysis of truss and frame structures. The worst and random imperfections are studied as advanced topics. An extensive review of the history of buckling is presented. This text is ideal for advanced undergraduate and graduate students in engineering and applied mathematics. To assist readers, problems are listed at the end of each chapter, and their answers are given at the end of the book. Kiyohiro Ikeda is Professor Emeritus at Tohoku University, Japan. Kazuo Murota is a Project Professor at the Institute of Statistical Mathematics, Japan, as well as Professor Emeritus at the University of Tokyo, Kyoto University, and Tokyo Metropolitan University, Japan.


Bifurcation and Buckling in Structures

Bifurcation and Buckling in Structures

Author: Kiyohiro Ikeda

Publisher: CRC Press

Published: 2021-12-30

Total Pages: 394

ISBN-13: 100050865X

DOWNLOAD EBOOK

Bifurcation and Buckling in Structures describes the theory and analysis of bifurcation and buckling in structures. Emphasis is placed on a general procedure for solving nonlinear governing equations and an analysis procedure related to the finite-element method. Simple structural examples using trusses, columns, and frames illustrate the principles. Part I presents fundamental issues such as the general mathematical framework for bifurcation and buckling, procedures for the buckling load/mode analyses, and numerical analysis procedures to trace the solution curves and switch to bifurcation solutions. Advanced topics include asymptotic theory of bifurcation and bifurcation theory of symmetric systems. Part II deals with buckling of perfect and imperfect structures. An overview of the member buckling of columns and beams is provided, followed by the buckling analysis of truss and frame structures. The worst and random imperfections are studied as advanced topics. An extensive review of the history of buckling is presented. This text is ideal for advanced undergraduate and graduate students in engineering and applied mathematics. To assist readers, problems are listed at the end of each chapter, and their answers are given at the end of the book. Kiyohiro Ikeda is Professor Emeritus at Tohoku University, Japan. Kazuo Murota is a Project Professor at the Institute of Statistical Mathematics, Japan, as well as Professor Emeritus at the University of Tokyo, Kyoto University, and Tokyo Metropolitan University, Japan.


Stability, Bifurcation and Postcritical Behaviour of Elastic Structures

Stability, Bifurcation and Postcritical Behaviour of Elastic Structures

Author: M. Pignataro

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 375

ISBN-13: 1483290832

DOWNLOAD EBOOK

A comprehensive and systematic analysis of elastic structural stability is presented in this volume. Traditional engineering buckling concepts are discussed in the framework of the Liapunov theory of stability by giving an extensive review of the Koiter approach. The perturbation method for both nonlinear algebraic and differential equations is discussed and adopted as the main tool for postbuckling analysis. The formulation of the buckling problem for the most common engineering structures - rods and frames, plates, shells, and thin-walled beams, is performed and the critical load evaluated for problems of interest. In many cases the postbuckling analysis up to the second order is presented. The use of the Ritz-Galerkin and of the finite element methods is examined as a tool for approximate bifurcation analysis. The volume will provide an up-to-date introduction for non-specialists in elastic stability theory and methods, and is intended for graduate and post-graduate students and researchers interested in nonlinear structural analysis problems. Basic prerequisites are kept to a minimum, a familiarity with elementary algebra and calculus is all that is required of readers to make use of this book.


Buckling and Post Buckling Structures

Buckling and Post Buckling Structures

Author: B. G. Falzon

Publisher: Imperial College Press

Published: 2008

Total Pages: 526

ISBN-13: 1848162308

DOWNLOAD EBOOK

This book provides an in-depth treatment of the study of the stability of engineering structures. Contributions from internationally recognized leaders in the field ensure a wide coverage of engineering disciplines in which structural stability is of importance, in particular the analytical and numerical modelling of structural stability applied to aeronautical, civil, marine and offshore structures. The results from a number of comprehensive experimental test programs are also presented, thus enhancing our understanding of stability phenomena as well as validating the analytical and computational solution schemes presented. A variety of structural materials are investigated with special emphasis on carbon-fibre composites, which are being increasingly utilized in weight-critical structures. Instabilities at the meso- and micro-scales are also discussed. This book will be particularly relevant to professional engineers, graduate students and researchers interested in structural stability.


Buckling of Structures

Buckling of Structures

Author: B. Budiansky

Publisher: Springer Science & Business Media

Published: 2013-03-08

Total Pages: 407

ISBN-13: 3642509924

DOWNLOAD EBOOK

This volume contains the written texts of the papers presented at a Symposium on Buckling of Structures held at Harvard University in June 1974. This symposium, one of several on various topics sponsored annually by the International Union of Theoretical and Applied Me chanics (IUTAM), was organized by a Scientific Committee consisting of B. Budiansky (Chairman), A. H. Chilver, W. T. Koiter, and A. S. Vol' mir. Participation was by invitation of the Scientific Committee, and specific lecturers were invited to speak in the areas of experimental research, buckling and post-buckling calculations, post-buckling mode interaction, plasticity and creep effects, dynamic buckling, stochastic problems, and design. A total of 29 lectures were delivered, including a general opening lecture by Professor Koiter, and there were 93 reg istered participants from 16 different countries. Financial support for the symposium was provided by IUTAM, in the form of partial travel support for a number of participants, and also by the National Science Foundation, the National Aeronautics and Space Administration, and the Air Force Office of Scientific Re search, for additional travel support and administrative expenses. Meeting facilities and services were efficiently provided by the Science Center of Harvard University, and administrative support was gen erously provided by the Division of Engineering and Applied Physics of Harvard University. The scientific chairman enjoyed the invaluable assistance of his colleagues Professors J. W. Hutchinson and J. L.


Flexural-Torsional Buckling of Structures

Flexural-Torsional Buckling of Structures

Author: N. S. Trahair

Publisher: Routledge

Published: 2017-11-13

Total Pages: 394

ISBN-13: 1351448307

DOWNLOAD EBOOK

Flexural-Torsional Buckling of Structures provides an up-to-date, comprehensive treatment of flexural-torsional buckling and demonstrates how to design against this mode of failure. The author first explains the fundamentals of this type of buckling behavior and then summarizes results that will be of use to designers and researchers in either equation or graphical form. This approach makes the book an ideal text/reference for students in structural engineering as well as for practicing civil engineers, structural engineers, and constructional steel researchers and designers. The book begins by introducing the modern development of the theory of flexural-torsional buckling through discussions on the general concepts of equilibrium, total potential, virtual work, and buckling. It then continues with in-depth coverage of hand methods for solving buckling problems, the analysis of flexural-torsional buckling using the finite element method, and the buckling of different types of structural elements and frames composed of various elastic materials. Other topics addressed include the design and inelastic buckling of steel members. The book's final chapter considers a collection of special topics.


Buckling of Shells

Buckling of Shells

Author: Ekkehard Ramm

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 666

ISBN-13: 3642493343

DOWNLOAD EBOOK

Thin shells are very popular structures in many different branches of engineering. There are the domes, water and cooling towers, the contain ments in civil engineering, the pressure vessels and pipes in mechanical and nuclear engineering, storage tanks and platform components in marine and offshore engineering, the car bodies in the automobile industry, planes, rockets and space structures in aeronautical engineering, to mention only a few examples of the broad spectrum of application. In addition there is the large applied mechanics group involved in all the computational and experimental work in this area. Thin shells are in a way optimal structures. They play the role of·the "primadonnas" among all kinds of structures. Their performance can be extraordinary, but they can also be very sensitive. The susceptibility to buckling is a typical example. David Bushnell says in his recent review paper entitled "Buckling of Shells - Pitfall for DeSigners": "To the layman buckling is a mysterious, perhaps even awe inspiring phenomenon that transforms objects originally imbued with symmetrical beauty into junk".


Buckling Experiments: Experimental Methods in Buckling of Thin-Walled Structures, Volume 1

Buckling Experiments: Experimental Methods in Buckling of Thin-Walled Structures, Volume 1

Author: Josef Singer

Publisher: John Wiley & Sons

Published: 1998-02-11

Total Pages: 644

ISBN-13: 9780471956617

DOWNLOAD EBOOK

Written by eminent researchers and renown authors of numerous publications in the buckling structures field. Deals with experimental investigation in the industry. Covers the conventional and more unconventional methods for testing for a wide variety of structures. Various parameters which may influence the test results are systemically highlighted including, imperfections, boundary conditions, loading conditions as well as the effects of holes and cut-outs.


Exact Solutions for Buckling of Structural Members

Exact Solutions for Buckling of Structural Members

Author: C.M. Wang

Publisher: CRC Press

Published: 2004-07-27

Total Pages: 220

ISBN-13: 0203483537

DOWNLOAD EBOOK

The study of buckling loads, which often hinges on numerical methods, is key in designing structural elements. But the need for analytical solutions in addition to numerical methods is what drove the creation of Exact Solutions for Buckling of Structural Members. It allows readers to assess the reliability and accuracy of solutions obtained by nume


Buckling and Postbuckling of Beams, Plates, and Shells

Buckling and Postbuckling of Beams, Plates, and Shells

Author: M. Reza Eslami

Publisher: Springer

Published: 2017-11-03

Total Pages: 603

ISBN-13: 3319623680

DOWNLOAD EBOOK

This book contains eight chapters treating the stability of all major areas of the flexural theory. It covers the stability of structures under mechanical and thermal loads and all areas of structural, loading and material types. The structural element may be assumed to be made of a homogeneous/isotropic material, or of a functionally graded material. Structures may experience the bifurcation phenomenon, or they may follow the postbuckling path. This volume explains all these aspects in detail. The book is self-contained and the necessary mathematical concepts and numerical methods are presented in such a way that the reader may easily follow the topics based on these basic tools. It is intended for people working or interested in areas of structural stability under mechanical and/or thermal loads. Some basic knowledge in classical mechanics and theory of elasticity is required.