The name of Bernard Riemann is well known to mathematicians and physicists around the world. His name is indelibly stamped on the literature of mathematics and physics. This remarkable work, rich in insight and scholarship, is addressed to mathematicians, physicists, and philosophers interested in mathematics. It seeks to draw those readers closer to the underlying ideas of Riemann’s work and to the development of them in their historical context. This illuminating English-language version of the original German edition will be an important contribution to the literature of the history of mathematics.
In August 1859 Bernhard Riemann, a little-known 32-year old mathematician, presented a paper to the Berlin Academy titled: "On the Number of Prime Numbers Less Than a Given Quantity." In the middle of that paper, Riemann made an incidental remark â€" a guess, a hypothesis. What he tossed out to the assembled mathematicians that day has proven to be almost cruelly compelling to countless scholars in the ensuing years. Today, after 150 years of careful research and exhaustive study, the question remains. Is the hypothesis true or false? Riemann's basic inquiry, the primary topic of his paper, concerned a straightforward but nevertheless important matter of arithmetic â€" defining a precise formula to track and identify the occurrence of prime numbers. But it is that incidental remark â€" the Riemann Hypothesis â€" that is the truly astonishing legacy of his 1859 paper. Because Riemann was able to see beyond the pattern of the primes to discern traces of something mysterious and mathematically elegant shrouded in the shadows â€" subtle variations in the distribution of those prime numbers. Brilliant for its clarity, astounding for its potential consequences, the Hypothesis took on enormous importance in mathematics. Indeed, the successful solution to this puzzle would herald a revolution in prime number theory. Proving or disproving it became the greatest challenge of the age. It has become clear that the Riemann Hypothesis, whose resolution seems to hang tantalizingly just beyond our grasp, holds the key to a variety of scientific and mathematical investigations. The making and breaking of modern codes, which depend on the properties of the prime numbers, have roots in the Hypothesis. In a series of extraordinary developments during the 1970s, it emerged that even the physics of the atomic nucleus is connected in ways not yet fully understood to this strange conundrum. Hunting down the solution to the Riemann Hypothesis has become an obsession for many â€" the veritable "great white whale" of mathematical research. Yet despite determined efforts by generations of mathematicians, the Riemann Hypothesis defies resolution. Alternating passages of extraordinarily lucid mathematical exposition with chapters of elegantly composed biography and history, Prime Obsession is a fascinating and fluent account of an epic mathematical mystery that continues to challenge and excite the world. Posited a century and a half ago, the Riemann Hypothesis is an intellectual feast for the cognoscenti and the curious alike. Not just a story of numbers and calculations, Prime Obsession is the engrossing tale of a relentless hunt for an elusive proof â€" and those who have been consumed by it.
Each chapter of this portrait of the evolution of mathematics examines the work of an individual — Archimedes, Descartes, Fermat, Pascal, Newton, Einstein, and others — to explore the mathematics of his era. Rather than a series of biographical profiles, readers encounter an accessible chronology of pioneering developments in mathematics. 1989 edition.
This book presents William Clifford’s English translation of Bernhard Riemann’s classic text together with detailed mathematical, historical and philosophical commentary. The basic concepts and ideas, as well as their mathematical background, are provided, putting Riemann’s reasoning into the more general and systematic perspective achieved by later mathematicians and physicists (including Helmholtz, Ricci, Weyl, and Einstein) on the basis of his seminal ideas. Following a historical introduction that positions Riemann’s work in the context of his times, the history of the concept of space in philosophy, physics and mathematics is systematically presented. A subsequent chapter on the reception and influence of the text accompanies the reader from Riemann’s times to contemporary research. Not only mathematicians and historians of the mathematical sciences, but also readers from other disciplines or those with an interest in physics or philosophy will find this work both appealing and insightful.
Unlike some other reproductions of classic texts (1) We have not used OCR(Optical Character Recognition), as this leads to bad quality books with introduced typos. (2) In books where there are images such as portraits, maps, sketches etc We have endeavoured to keep the quality of these images, so they represent accurately the original artefact. Although occasionally there may be certain imperfections with these old texts, we feel they deserve to be made available for future generations to enjoy.
Originated from the notes of a course given at Princeton University in 1950-1951, this text offers an introduction to algebraic numbers and algebraic functions. It starts with the general theory of valuation fields, proceeds to the local class field theory, and then to the theory of function fields in one variable.
Like a hunter who sees 'a bit of blood' on the trail, that's how Princeton mathematician Peter Sarnak describes the feeling of chasing an idea that seems to have a chance of success. If this is so, then the jungle of abstractions that is mathematics is full of frenzied hunters these days. They are out stalking big game: the resolution of 'The Riemann Hypothesis', seems to be in their sights. The Riemann Hypothesis is about the prime numbers, the fundamental numerical elements. Stated in 1859 by Professor Bernhard Riemann, it proposes a simple law which Riemann believed a 'very likely' explanation for the way in which the primes are distributed among the whole numbers, indivisible stars scattered without end throughout a boundless numerical universe. Just eight years later, at the tender age of thirty-nine Riemann would be dead from tuberculosis, cheated of the opportunity to settle his conjecture. For over a century, the Riemann Hypothesis has stumped the greatest of mathematical minds, but these days frustration has begun to give way to excitement. This unassuming comment is revealing astounding connections among nuclear physics, chaos and number theory, creating a frenzy of intellectual excitement amplified by the recent promise of a one million dollar bounty. The story of the quest to settle the Riemann Hypothesis is one of scientific exploration. It is peopled with solitary hermits and gregarious cheerleaders, cool calculators and wild-eyed visionaries, Nobel Prize-winners and Fields Medalists. To delve into the Riemann Hypothesis is to gain a window into the world of modern mathematics and the nature of mathematics research. Stalking the Riemann Hypothesis will open wide this window so that all may gaze through it in amazement.