Bayesian Nonparametric Data Analysis

Bayesian Nonparametric Data Analysis

Author: Peter Müller

Publisher: Springer

Published: 2015-06-17

Total Pages: 203

ISBN-13: 3319189689

DOWNLOAD EBOOK

This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book’s structure follows a data analysis perspective. As such, the chapters are organized by traditional data analysis problems. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones. The discussed methods are illustrated with a wealth of examples, including applications ranging from stylized examples to case studies from recent literature. The book also includes an extensive discussion of computational methods and details on their implementation. R code for many examples is included in online software pages.


Bayesian Nonparametrics

Bayesian Nonparametrics

Author: J.K. Ghosh

Publisher: Springer Science & Business Media

Published: 2006-05-11

Total Pages: 311

ISBN-13: 0387226540

DOWNLOAD EBOOK

This book is the first systematic treatment of Bayesian nonparametric methods and the theory behind them. It will also appeal to statisticians in general. The book is primarily aimed at graduate students and can be used as the text for a graduate course in Bayesian non-parametrics.


Bayesian Nonparametrics

Bayesian Nonparametrics

Author: Nils Lid Hjort

Publisher: Cambridge University Press

Published: 2010-04-12

Total Pages: 309

ISBN-13: 1139484605

DOWNLOAD EBOOK

Bayesian nonparametrics works - theoretically, computationally. The theory provides highly flexible models whose complexity grows appropriately with the amount of data. Computational issues, though challenging, are no longer intractable. All that is needed is an entry point: this intelligent book is the perfect guide to what can seem a forbidding landscape. Tutorial chapters by Ghosal, Lijoi and Prünster, Teh and Jordan, and Dunson advance from theory, to basic models and hierarchical modeling, to applications and implementation, particularly in computer science and biostatistics. These are complemented by companion chapters by the editors and Griffin and Quintana, providing additional models, examining computational issues, identifying future growth areas, and giving links to related topics. This coherent text gives ready access both to underlying principles and to state-of-the-art practice. Specific examples are drawn from information retrieval, NLP, machine vision, computational biology, biostatistics, and bioinformatics.


Nonparametric Inference on Manifolds

Nonparametric Inference on Manifolds

Author: Abhishek Bhattacharya

Publisher: Cambridge University Press

Published: 2012-04-05

Total Pages: 252

ISBN-13: 1107019583

DOWNLOAD EBOOK

Ideal for statisticians, this book will also interest probabilists, mathematicians, computer scientists, and morphometricians with mathematical training. It presents a systematic introduction to a general nonparametric theory of statistics on manifolds, with emphasis on manifolds of shapes. The theory has important applications in medical diagnostics, image analysis and machine vision.


All of Nonparametric Statistics

All of Nonparametric Statistics

Author: Larry Wasserman

Publisher: Springer Science & Business Media

Published: 2006-09-10

Total Pages: 272

ISBN-13: 0387306234

DOWNLOAD EBOOK

This text provides the reader with a single book where they can find accounts of a number of up-to-date issues in nonparametric inference. The book is aimed at Masters or PhD level students in statistics, computer science, and engineering. It is also suitable for researchers who want to get up to speed quickly on modern nonparametric methods. It covers a wide range of topics including the bootstrap, the nonparametric delta method, nonparametric regression, density estimation, orthogonal function methods, minimax estimation, nonparametric confidence sets, and wavelets. The book’s dual approach includes a mixture of methodology and theory.


Parametric and Nonparametric Inference from Record-Breaking Data

Parametric and Nonparametric Inference from Record-Breaking Data

Author: Sneh Gulati

Publisher: Springer Science & Business Media

Published: 2003-01-27

Total Pages: 132

ISBN-13: 9780387001388

DOWNLOAD EBOOK

By providing a comprehensive look at statistical inference from record-breaking data in both parametric and nonparametric settings, this book treats the area of nonparametric function estimation from such data in detail. Its main purpose is to fill this void on general inference from record values. Statisticians, mathematicians, and engineers will find the book useful as a research reference. It can also serve as part of a graduate-level statistics or mathematics course.


Statistical Inference

Statistical Inference

Author: Murray Aitkin

Publisher: CRC Press

Published: 2010-06-02

Total Pages: 256

ISBN-13: 1420093444

DOWNLOAD EBOOK

Filling a gap in current Bayesian theory, Statistical Inference: An Integrated Bayesian/Likelihood Approach presents a unified Bayesian treatment of parameter inference and model comparisons that can be used with simple diffuse prior specifications. This novel approach provides new solutions to difficult model comparison problems and offers direct


Bayesian Non- and Semi-parametric Methods and Applications

Bayesian Non- and Semi-parametric Methods and Applications

Author: Peter Rossi

Publisher: Princeton University Press

Published: 2014-04-27

Total Pages: 218

ISBN-13: 0691145326

DOWNLOAD EBOOK

This book reviews and develops Bayesian non-parametric and semi-parametric methods for applications in microeconometrics and quantitative marketing. Most econometric models used in microeconomics and marketing applications involve arbitrary distributional assumptions. As more data becomes available, a natural desire to provide methods that relax these assumptions arises. Peter Rossi advocates a Bayesian approach in which specific distributional assumptions are replaced with more flexible distributions based on mixtures of normals. The Bayesian approach can use either a large but fixed number of normal components in the mixture or an infinite number bounded only by the sample size. By using flexible distributional approximations instead of fixed parametric models, the Bayesian approach can reap the advantages of an efficient method that models all of the structure in the data while retaining desirable smoothing properties. Non-Bayesian non-parametric methods often require additional ad hoc rules to avoid "overfitting," in which resulting density approximates are nonsmooth. With proper priors, the Bayesian approach largely avoids overfitting, while retaining flexibility. This book provides methods for assessing informative priors that require only simple data normalizations. The book also applies the mixture of the normals approximation method to a number of important models in microeconometrics and marketing, including the non-parametric and semi-parametric regression models, instrumental variables problems, and models of heterogeneity. In addition, the author has written a free online software package in R, "bayesm," which implements all of the non-parametric models discussed in the book.


Bayesian Data Analysis, Third Edition

Bayesian Data Analysis, Third Edition

Author: Andrew Gelman

Publisher: CRC Press

Published: 2013-11-01

Total Pages: 677

ISBN-13: 1439840954

DOWNLOAD EBOOK

Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.