Analysis of Step-Stress Models: Existing Results and Some Recent Developments describes, in detail, the step-stress models and related topics that have received significant attention in the last few years. Although two books, Bagdonavicius and Nikulin (2001) and Nelson (1990), on general accelerated life testing models are available, no specific book is available on step-stress models. Due to the importance of this particular topic, Balakrishnan (2009) provided an excellent review for exponential step-stress models. The scope of this book is much more, providing the inferential issues for different probability models, both from the frequentist and Bayesian points-of-view. - Explains the different distributions of the Cumulative Exposure Mode - Covers many different models used for step-stress analysis - Discusses Step-stress life testing under the competing or complementary risk model
Bayesian analysis is one of the important tools for statistical modelling and inference. Bayesian frameworks and methods have been successfully applied to solve practical problems in reliability and survival analysis, which have a wide range of real world applications in medical and biological sciences, social and economic sciences, and engineering. In the past few decades, significant developments of Bayesian inference have been made by many researchers, and advancements in computational technology and computer performance has laid the groundwork for new opportunities in Bayesian computation for practitioners. Because these theoretical and technological developments introduce new questions and challenges, and increase the complexity of the Bayesian framework, this book brings together experts engaged in groundbreaking research on Bayesian inference and computation to discuss important issues, with emphasis on applications to reliability and survival analysis. Topics covered are timely and have the potential to influence the interacting worlds of biostatistics, engineering, medical sciences, statistics, and more. The included chapters present current methods, theories, and applications in the diverse area of biostatistical analysis. The volume as a whole serves as reference in driving quality global health research.
We all like to know how reliable and how risky certain situations are, and our increasing reliance on technology has led to the need for more precise assessments than ever before. Such precision has resulted in efforts both to sharpen the notions of risk and reliability, and to quantify them. Quantification is required for normative decision-making, especially decisions pertaining to our safety and wellbeing. Increasingly in recent years Bayesian methods have become key to such quantifications. Reliability and Risk provides a comprehensive overview of the mathematical and statistical aspects of risk and reliability analysis, from a Bayesian perspective. This book sets out to change the way in which we think about reliability and survival analysis by casting them in the broader context of decision-making. This is achieved by: Providing a broad coverage of the diverse aspects of reliability, including: multivariate failure models, dynamic reliability, event history analysis, non-parametric Bayes, competing risks, co-operative and competing systems, and signature analysis. Covering the essentials of Bayesian statistics and exchangeability, enabling readers who are unfamiliar with Bayesian inference to benefit from the book. Introducing the notion of “composite reliability”, or the collective reliability of a population of items. Discussing the relationship between notions of reliability and survival analysis and econometrics and financial risk. Reliability and Risk can most profitably be used by practitioners and research workers in reliability and survivability as a source of information, reference, and open problems. It can also form the basis of a graduate level course in reliability and risk analysis for students in statistics, biostatistics, engineering (industrial, nuclear, systems), operations research, and other mathematically oriented scientists, wherein the instructor could supplement the material with examples and problems.
Early approaches to accelerated testing were based on the assumption that there was a simple acceleration factor that would correspond to a linear scaling of time from the operating stress to the accelerating stress. This corresponds to the simplest physical model of the kinetics governing the underlying degradation, but this simple model does not always hold. We need to understand what more complex physical models may look like. Design & Analysis of Accelerated Tests for Mission Critical Reliability presents innovative theory and methods for recognizing and handling the more complicated, cases often encountered in practice. The theory integrates a physical understanding of underlying phenomena and the statistical modeling of observation "noise" to provide a single theoretical framework for accelerated testing. The treatment includes general approaches that can be used with various computational software packages and an explicit computing environment in S-PLUS. Source code written by the authors is included and available for download from http://www.crcpress.com/e_products/downloads. For practitioners, this book provides immediately useable tools. For researchers, it presents intriguing open questions. And for the academic community, numerous worked examples, end-of-chapter exercises, and a format that relegates technical and theoretical details to chapter appendices make this an outstanding supplementary textbook for senior and graduate-level students.
This book considers a broad range of areas from decision making methods applied in the contexts of Risk, Reliability and Maintenance (RRM). Intended primarily as an update of the 2015 book Multicriteria and Multiobjective Models for Risk, Reliability and Maintenance Decision Analysis, this edited work provides an integration of applied probability and decision making. Within applied probability, it primarily includes decision analysis and reliability theory, amongst other topics closely related to risk analysis and maintenance. In decision making, it includes multicriteria decision making/aiding (MCDM/A) methods and optimization models. Within MCDM, in addition to decision analysis, some of the topics related to mathematical programming areas are considered, such as multiobjective linear programming, multiobjective nonlinear programming, game theory and negotiations, and multiobjective optimization. Methods related to these topics have been applied to the context of RRM. In MCDA, several other methods are considered, such as outranking methods, rough sets and constructive approaches. The book addresses an innovative treatment of decision making in RRM, improving the integration of fundamental concepts from both areas of RRM and decision making. This is accomplished by presenting current research developments in decision making on RRM. Some pitfalls of decision models on practical applications on RRM are discussed and new approaches for overcoming those drawbacks are presented.
In the last two decades, Bayesian Statistics has acquired immense importance and has penetrated almost every area including those where the application of statistics appeared to be a remote possibility. This volume provides both theoretical and practical insights into the subject with detailed up-to-date material on various aspects. It serves two important objectives - to offer a thorough background material for theoreticians and gives a variety of applications for applied statisticians and practitioners. Consisting of 33 chapters, it covers topics on biostatistics, econometrics, reliability, image analysis, Bayesian computation, neural networks, prior elicitation, objective Bayesian methodologies, role of randomisation in Bayesian analysis, spatial data analysis, nonparametrics and a lot more. The book will serve as an excellent reference work for updating knowledge and for developing new methodologies in a wide variety of areas. It will become an invaluable tool for statisticians and the practitioners of Bayesian paradigm.