Basic Physics Of Radiotracers

Basic Physics Of Radiotracers

Author: W. Earl Barnes

Publisher: CRC Press

Published: 2017-09-29

Total Pages: 190

ISBN-13: 1351368990

DOWNLOAD EBOOK

The opportunity to present the physics of radioactive processes in some detail apart from topics such as instrumentation which conventionally compete with it for spacer is most welcome. The material is intended to give a fairly complete introduction to radiation physics to those who which to have more than a descriptive understanding of the subject. Although it is possible to work one’s way through much of the subject matter without having any previous physics background, some prior acquaintance with modern physics is desirable. A familiarity with calculus and differential equations is also assumed. Volume I begins with a brief description of classical physics, it’s extension to special relativity and quantum mechanics, and an introduction to basic atomic and nuclear concepts. A thorough discussion of atomic structure follows with emphasis on the theory of the multielectron atom, characteristic X-rays, and the Auger effect. Volume II treats the subjects of nuclear structure, nuclear decay processes, the interaction of radiation with matter, and the mathematics of radioactive decay.


Basic Physics Of Radiotracers

Basic Physics Of Radiotracers

Author: Earl W. Barnes

Publisher: CRC Press

Published: 2017-07-28

Total Pages: 176

ISBN-13: 135136894X

DOWNLOAD EBOOK

The opportunity to present the physics of radioactive processes in some detail apart from topics such as instrumentation which conventionally compete with it for spacer is most welcome. The material is intended to give a fairly complete introduction to radiation physics to those who which to have more than a descriptive understanding of the subject. Although it is possible to work one’s way through much of the subject matter without having any previous physics background, some prior acquaintance with modern physics is desirable. A familiarity with calculus and differential equations is also assumed. Volume I begins with a brief description of classical physics, it’s extension to special relativity and quantum mechanics, and an introduction to basic atomic and nuclear concepts. A thorough discussion of atomic structure follows with emphasis on the theory of the multielectron atom, characteristic X-rays, and the Auger effect. Volume II treats the subjects of nuclear structure, nuclear decay processes, the interaction of radiation with matter, and the mathematics of radioactive decay.


Nuclear Medicine Physics: The Basics

Nuclear Medicine Physics: The Basics

Author: Ramesh Chandra

Publisher: Lippincott Williams & Wilkins

Published: 2017-10-16

Total Pages: 469

ISBN-13: 1496381866

DOWNLOAD EBOOK

Part of the renowned The Basics series, Nuclear Medicine Physics helps build foundational knowledge of how and why things happen in the clinical environment. Ideal for board review and reference, the 8th edition provides a practical summary of this complex field, focusing on essential details as well as real-life examples taken from nuclear medicine practice. New full-color illustrations, concise text, essential mathematical equations, key points, review questions, and useful appendices help you quickly master challenging concepts in nuclear medicine physics.


Nuclear Medicine Physics

Nuclear Medicine Physics

Author: Dale L. Bailey

Publisher:

Published: 2015-03-10

Total Pages: 0

ISBN-13: 9789201438102

DOWNLOAD EBOOK

This publication provides the basis for the education of medical physicists initiating their university studies in the field of nuclear medicine. The handbook includes 20 chapters and covers topics relevant to nuclear medicine physics, including basic physics for nuclear medicine, radionuclide production, imaging and non-imaging detectors, quantitative nuclear medicine, internal dosimetry in clinical practice and radionuclide therapy. It provides, in the form of a syllabus, a comprehensive overview of the basic medical physics knowledge required for the practice of medical physics in modern nuclear medicine.


Basic Science of PET Imaging

Basic Science of PET Imaging

Author: Magdy M. Khalil

Publisher: Springer

Published: 2016-11-07

Total Pages: 621

ISBN-13: 3319400703

DOWNLOAD EBOOK

This book offers a wide-ranging and up-to-date overview of the basic science underlying PET and its preclinical and clinical applications in modern medicine. In addition, it provides the reader with a sound understanding of the scientific principles and use of PET in routine practice and biomedical imaging research. The opening sections address the fundamental physics, radiation safety, CT scanning dosimetry, and dosimetry of PET radiotracers, chemistry and regulation of PET radiopharmaceuticals, with information on labeling strategies, tracer quality control, and regulation of radiopharmaceutical production in Europe and the United States. PET physics and instrumentation are then discussed, covering the basic principles of PET and PET scanning systems, hybrid PET/CT and PET/MR imaging, system calibration, acceptance testing, and quality control. Subsequent sections focus on image reconstruction, processing, and quantitation in PET and hybrid PET and on imaging artifacts and correction techniques, with particular attention to partial volume correction and motion artifacts. The book closes by examining clinical applications of PET and hybrid PET and their physiological and/or molecular basis in conjunction with technical foundations in the disciplines of oncology, cardiology and neurology, PET in pediatric malignancy and its role in radiotherapy treatment planning. Basic Science of PET Imaging will meet the needs of nuclear medicine practitioners, other radiology specialists, and trainees in these fields.


Advancing Nuclear Medicine Through Innovation

Advancing Nuclear Medicine Through Innovation

Author: National Research Council

Publisher: National Academies Press

Published: 2007-09-11

Total Pages: 173

ISBN-13: 0309134153

DOWNLOAD EBOOK

Nearly 20 million nuclear medicine procedures are carried out each year in the United States alone to diagnose and treat cancers, cardiovascular disease, and certain neurological disorders. Many of the advancements in nuclear medicine have been the result of research investments made during the past 50 years where these procedures are now a routine part of clinical care. Although nuclear medicine plays an important role in biomedical research and disease management, its promise is only beginning to be realized. Advancing Nuclear Medicine Through Innovation highlights the exciting emerging opportunities in nuclear medicine, which include assessing the efficacy of new drugs in development, individualizing treatment to the patient, and understanding the biology of human diseases. Health care and pharmaceutical professionals will be most interested in this book's examination of the challenges the field faces and its recommendations for ways to reduce these impediments.


Radiopharmaceutical Chemistry

Radiopharmaceutical Chemistry

Author: Jason S. Lewis

Publisher: Springer

Published: 2019-04-02

Total Pages: 648

ISBN-13: 3319989472

DOWNLOAD EBOOK

This book is a comprehensive guide to radiopharmaceutical chemistry. The stunning clinical successes of nuclear imaging and targeted radiotherapy have resulted in rapid growth in the field of radiopharmaceutical chemistry, an essential component of nuclear medicine and radiology. However, at this point, interest in the field outpaces the academic and educational infrastructure needed to train radiopharmaceutical chemists. For example, the vast majority of texts that address radiopharmaceutical chemistry do so only peripherally, focusing instead on nuclear chemistry (i.e. nuclear reactions in reactors), heavy element radiochemistry (i.e. the decomposition of radioactive waste), or solely on the clinical applications of radiopharmaceuticals (e.g. the use of PET tracers in oncology). This text fills that gap by focusing on the chemistry of radiopharmaceuticals, with key coverage of how that knowledge translates to the development of diagnostic and therapeutic radiopharmaceuticals for the clinic. The text is divided into three overarching sections: First Principles, Radiochemistry, and Special Topics. The first is a general overview covering fundamental and broad issues like “The Production of Radionuclides” and “Basics of Radiochemistry”. The second section is the main focus of the book. In this section, each chapter’s author will delve much deeper into the subject matter, covering both well established and state-of-the-art techniques in radiopharmaceutical chemistry. This section will be divided according to radionuclide and will include chapters on radiolabeling methods using all of the common nuclides employed in radiopharmaceuticals, including four chapters on the ubiquitously used fluorine-18 and a “Best of the Rest” chapter to cover emerging radionuclides. Finally, the third section of the book is dedicated to special topics with important information for radiochemists, including “Bioconjugation Methods,” “Click Chemistry in Radiochemistry”, and “Radiochemical Instrumentation.” This is an ideal educational guide for nuclear medicine physicians, radiologists, and radiopharmaceutical chemists, as well as residents and trainees in all of these areas.


Radiotracers in Drug Development

Radiotracers in Drug Development

Author: Graham Lappin

Publisher: CRC Press

Published: 2006-04-03

Total Pages: 321

ISBN-13: 1420004980

DOWNLOAD EBOOK

Although there are numerous books on drug metabolism, Radiotracers in Drug Development is unique in explaining how radiotracers are used to elucidate a drug's absorption, distribution, metabolism, and excretion (ADME). Covering traditional and recent technologies and applications, the book takes a strong industrial approach, discussing the b


Physics in Nuclear Medicine

Physics in Nuclear Medicine

Author: Simon R. Cherry

Publisher:

Published: 2003

Total Pages: 552

ISBN-13:

DOWNLOAD EBOOK

In this work, the authors provide up-to-date, comprehensive information on the physics underlying modern nuclear medicine and imaging using radioactively labelled tracers. Examples are presented with solutions worked out in step-by-step detail, illustrating important concepts and calculations.