This book is specifically designed to underpin the concepts of statistics and epidemiology. It is practical and easy to use and is ideal for people who can feel uncomfortable with mathematics.
A guide in basic statistics emphasises its practical use in epidemiology and public health, providing understanding of topics such as study design, data analysis and statistical methods used in the execution of medical research. This title includes sections on Correlation and Linear Regression, as well as exercises reflecting working life.
Statistical ideas have been integral to the development of epidemiology and continue to provide the tools needed to interpret epidemiological studies. Although epidemiologists do not need a highly mathematical background in statistical theory to conduct and interpret such studies, they do need more than an encyclopedia of "recipes." Statistics for Epidemiology achieves just the right balance between the two approaches, building an intuitive understanding of the methods most important to practitioners and the skills to use them effectively. It develops the techniques for analyzing simple risk factors and disease data, with step-by-step extensions that include the use of binary regression. It covers the logistic regression model in detail and contrasts it with the Cox model for time-to-incidence data. The author uses a few simple case studies to guide readers from elementary analyses to more complex regression modeling. Following these examples through several chapters makes it easy to compare the interpretations that emerge from varying approaches. Written by one of the top biostatisticians in the field, Statistics for Epidemiology stands apart in its focus on interpretation and in the depth of understanding it provides. It lays the groundwork that all public health professionals, epidemiologists, and biostatisticians need to successfully design, conduct, and analyze epidemiological studies.
Anyone who attempts to read genetics or epidemiology research literature needs to understand the essentials of biostatistics. This book, a revised new edition of the successful Essentials of Biostatistics has been written to provide such an understanding to those who have little or no statistical background and who need to keep abreast of new findings in this fast moving field. Unlike many other elementary books on biostatistics, the main focus of this book is to explain basic concepts needed to understand statistical procedures. This Book: Surveys basic statistical methods used in the genetics and epidemiology literature, including maximum likelihood and least squares. Introduces methods, such as permutation testing and bootstrapping, that are becoming more widely used in both genetic and epidemiological research. Is illustrated throughout with simple examples to clarify the statistical methodology. Explains Bayes’ theorem pictorially. Features exercises, with answers to alternate questions, enabling use as a course text. Written at an elementary mathematical level so that readers with high school mathematics will find the content accessible. Graduate students studying genetic epidemiology, researchers and practitioners from genetics, epidemiology, biology, medical research and statistics will find this an invaluable introduction to statistics.
Concise, fast-paced, intensive introduction to clinical research design for students and clinical research professionals Readers will gain sufficient knowledge to pass the United States Medical Licensing Examination part I section in Epidemiology
This self-contained account of the statistical basis of epidemiology has been written for those with a basic training in biology. It is specifically intended for students enrolled for a masters degree in epidemiology, clinical epidemiology, or biostatistics.
Statistical Analysis of Human Growth and Development is an accessible and practical guide to a wide range of basic and advanced statistical methods that are useful for studying human growth and development. Designed for nonstatisticians and statisticians new to the analysis of growth and development data, the book collects methods scattered throughout the literature and explains how to use them to solve common research problems. It also discusses how well a method addresses a specific scientific question and how to interpret and present the analytic results. Stata is used to implement the analyses, with Stata codes and macros for generating example data sets, a detrended Q-Q plot, and weighted maximum likelihood estimation of binary items available on the book’s CRC Press web page. After reviewing research designs and basic statistical tools, the author discusses the use of existing tools to transform raw data into analyzable variables and back-transform them to raw data. He covers regression analysis of quantitative, binary, and censored data as well as the analysis of repeated measurements and clustered data. He also describes the development of new growth references and developmental indices, the generation of key variables based on longitudinal data, and the processes to verify the validity and reliability of measurement tools. Looking at the larger picture of research practice, the book concludes with coverage of missing values, multiplicity problems, and multivariable regression. Along with two simulated data sets, numerous examples from real experimental and observational studies illustrate the concepts and methods. Although the book focuses on examples of anthropometric measurements and changes in cognitive, social-emotional, locomotor, and other abilities, the ideas are applicable to many other physical and psychosocial phenomena, such as lung function and depressive symptoms.
Basic Biostatistics is a concise, introductory text that covers biostatistical principles and focuses on the common types of data encountered in public health and biomedical fields. The text puts equal emphasis on exploratory and confirmatory statistical methods. Sampling, exploratory data analysis, estimation, hypothesis testing, and power and precision are covered through detailed, illustrative examples. The book is organized into three parts: Part I addresses basic concepts and techniques; Part II covers analytic techniques for quantitative response variables; and Part III covers techniques for categorical responses. The Second Edition offers many new exercises as well as an all new chapter on "Poisson Random Variables and the Analysis of Rates." With language, examples, and exercises that are accessible to students with modest mathematical backgrounds, this is the perfect introductory biostatistics text for undergraduates and graduates in various fields of public health. Features: Illustrative, relevant examples and exercises incorporated throughout the book. Answers to odd-numbered exercises provided in the back of the book. (Instructors may requests answers to even-numbered exercises from the publisher. Chapters are intentionally brief and limited in scope to allow for flexibility in the order of coverage. Equal attention is given to manual calculations as well as the use of statistical software such as StaTable, SPSS, and WinPepi. Comprehensive Companion Website with Student and Instructor's Resources.
Statistics are a vital skill for epidemiologists and form an essential part of clinical medicine. This textbook introduces students to statistical epidemiology methods in a carefully structured and accessible format with clearly defined learning outcomes and suggested chapter orders that can be tailored to the needs of students at both undergraduate and graduate level from a range of academic backgrounds. The book covers study design, disease measuring, bias, error, analysis and modelling and is illustrated with figures, focus boxes, study questions and examples applicable to everyday clinical problems. Drawing on the authors' extensive teaching experience, the text provides an introduction to core statistical epidemiology that will be a valuable resource for students and lecturers in health and medical sciences and applied statistics, health staff, clinical researchers and data managers.