Papers cover: laboratory and in-situ testing; coupled effects and permeability; creep damage and dilatancy; constitutive modelling; crushed salt behaviour; numerical modelling; storage and disposal projects; mining applications; case studies; and salt pillars and cavities.
Applied Salt-Rock Mechanics, 1: The In-Situ Behavior of Salt Rocks considers the principles of the inelastic in-situ behavior of rock salts. This five-chapter text surveys the successful application of hypothesis in various salt deposits. This book deals first with the geological investigations concerning the genesis and geologic features of salt deposits, specifically the geology of evaporite formation. The following chapter describes the physical and mechanical properties of salt rocks, such as creep, strain, hardening, tensile and shearing strengths, permeability, and plasticity. The discussion then shifts to the mechanism of stress-relief creep occurring in salt rock by excavation. The last chapter examines stress-relief creep zones, which extend to the boundary of interbedded formations exhibiting elastic behavior.
This collection of papers on research into and management of underground structures in salt formations represents the state-of-the-art on applications of salt mechanics in mines and storage caverns for gas/hydrocarbon, radioactive waste and toxic waste disposal. The contributions cover laboratory experiments, constitutive numerical modeling and field investigations, and deal with creep, damage, thermo-hydro-mechanical and chemical-coupled effects, lessons learnt from real sites and structures and in-situ monitoring. The book is organized into eight topics: • Laboratory investigations and constitutive modeling • Coupled processes and hydro-chemical effects (THMC) • Field measurements and back-analyses • Numerical modeling • Dry mining, post-mining and backfilling • Liquid hydrocarbon storage and brine-production caverns • Gaseous hydrocarbon storage and compressed air energy storage • Hazardous and radioactive waste disposal Mechanical Behavior of Salt VII will appeal to academics, engineers and professionals involved in salt mechanics.
A unique opportunity to review the latest progress in an expanding area of interest: the Mechanical Behaviour of Salt. These Proceedings include over fifty papers and summaries describing the latest findings in ongoing studies from a number of research groups. For the 2007 conference, there was a particular focus on the understanding of thermal, mechanical, hydraulic and chemical coupled processes (THMC). Such processes are of specific interest when considering advanced problems in waste disposal, storage and mining. The book includes a number of themes: - laboratory and in-situ investigations modelling, e.g. derivation of constitutive equations - numerical computations and prediction of long-term behaviour - THMC processes in mining projects, storage and permanent disposal - case studies - geology - mining and storage applications and abandonment The International Conferences on the Mechanical Behaviour of Salt have a long tradition, being initiated in 1981 at The Pennsylvania State University, USA. The present conference, the sixth of the series, took place in Hannover, Germany, in May 2007. The conference brought together mining engineers, researchers, and university professors interested in the mechanical behaviour of salt, mostly from Europe and beyond.
Papers cover: laboratory and in-situ testing; coupled effects and permeability; creep damage and dilatancy; constitutive modelling; crushed salt behaviour; numerical modelling; storage and disposal projects; mining applications; case studies; and salt pillars and cavities.
Rock salt formations have long been recognized as a valuable resource - not only for salt mining but for construction of oil and gas storage caverns and for isolation of radioactive and other hazardous wastes. Current interest is fast expanding towards construction and re-use of solution-mined caverns for storage of renewable energy in the form of hydrogen, compressed air and other gases. Evaluating the long term performance and safety of such systems demands an understanding of the coupled mechanical behavior and transport properties of salt. This volume presents a collection of 60 research papers defining the state-of-the-art in the field. Topics range from fundamental work on deformation mechanisms and damage of rock salt to compaction of engineered salt backfill. The latest constitutive models are applied in computational studies addressing the evolution and integrity of storage caverns, repositories, salt mines and entire salt formations, while field studies document ground truth at multiple scales. The volume is structured into seven themes: Microphysical processes and creep models Laboratory testing Geological isolation systems and geotechnical barriers Analytical and numerical modelling Monitoring and site-specific studies Cavern and borehole abandonment and integrity Energy storage in salt caverns The Mechanical Behavior of Salt X will appeal to graduate students, academics, engineers and professionals working in the fields of salt mechanics, salt mining and geological storage of energy and wastes, but also to researchers in rock physics in general.
Technical contributions contained in this volume characterize continuity of science, engineering and modeling regarding the mechanical behavior of salt. These papers evidence relationships from microscopic dislocation structure to modeling applications over kilometer dimensions, a reach of more than ten orders of magnitude. The book is arranged alo
Principles is the first volume of the five-volume set Rock Mechanics and Engineering and contains twenty-four chapters from key experts in the following fields: - Discontinuities; - Anisotropy; - Rock Stress; - Geophysics; - Strength Criteria; - Modeling Rock Deformation and Failure. The five-volume set “Comprehensive Rock Engineering”, which was published in 1993, has had an important influence on the development of rock mechanics and rock engineering. Significant and extensive advances and achievements in these fields over the last 20 years now justify the publishing of a comparable, new compilation. Rock Mechanics and Engineering represents a highly prestigious, multi-volume work edited by Professor Xia-Ting Feng, with the editorial advice of Professor John A. Hudson. This new compilation offers an extremely wideranging and comprehensive overview of the state-of-the-art in rock mechanics and rock engineering and is composed of peer-reviewed, dedicated contributions by all the key experts worldwide. Key features of this set are that it provides a systematic, global summary of new developments in rock mechanics and rock engineering practices as well as looking ahead to future developments in the fields. Contributors are worldrenowned experts in the fields of rock mechanics and rock engineering, though younger, talented researchers have also been included. The individual volumes cover an extremely wide array of topics grouped under five overarching themes: Principles (Vol. 1), Laboratory and Field Testing (Vol. 2), Analysis, Modelling and Design (Vol. 3), Excavation, Support and Monitoring (Vol. 4) and Surface and Underground Projects (Vol. 5). This multi-volume work sets a new standard for rock mechanics and engineering compendia and will be the go-to resource for all engineering professionals and academics involved in rock mechanics and engineering for years to come.
Analysis, Modeling & Design is the third volume of the five-volume set Rock Mechanics and Engineering and contains twenty-eight chapters from key experts in the following fields: - Numerical Modeling Methods; - Back Analysis; - Risk Analysis; - Design and Stability Analysis: Overviews; - Design and Stability Analysis: Coupling Process Analysis; - Design and Stability Analysis: Blast Analysis and Design; - Rock Slope Stability Analysis and Design; - Analysis and Design of Tunnels, Caverns and Stopes. The five-volume set “Comprehensive Rock Engineering”, which was published in 1993, has had an important influence on the development of rock mechanics and rock engineering. Significant and extensive advances and achievements in these fields over the last 20 years now justify the publishing of a comparable, new compilation. Rock Mechanics and Engineering represents a highly prestigious, multi-volume work edited by Professor Xia-Ting Feng, with the editorial advice of Professor John A. Hudson. This new compilation offers an extremely wideranging and comprehensive overview of the state-of-the-art in rock mechanics and rock engineering and is composed of peer-reviewed, dedicated contributions by all the key experts worldwide. Key features of this set are that it provides a systematic, global summary of new developments in rock mechanics and rock engineering practices as well as looking ahead to future developments in the fields. Contributors are worldrenowned experts in the fields of rock mechanics and rock engineering, though younger, talented researchers have also been included. The individual volumes cover an extremely wide array of topics grouped under five overarching themes: Principles (Vol. 1), Laboratory and Field Testing (Vol. 2), Analysis, Modelling and Design (Vol. 3), Excavation, Support and Monitoring (Vol. 4) and Surface and Underground Projects (Vol. 5). This multi-volume work sets a new standard for rock mechanics and engineering compendia and will be the go-to resource for all engineering professionals and academics involved in rock mechanics and engineering for years to come.
In 1999 the International Centre for Mechanical Sciences celebrates thirty years of activity. For this celebration CISM has organized a series of courses and meetings on environmental problems, one of the leading subjects today of theoretical and applied research all over the world. The results obtained directly influence our daily life, particularly in applications for protection from pollution and natural hazards. The most significant of the events was the Conference on "Environmental Applications of Mechanics and Computer Science”, where prominent scientists in the field present significant examples of the scientific approach to large scale phenomena involved in environmental problems.