Basic Algebraic Geometry 2

Basic Algebraic Geometry 2

Author: Igor Rostislavovich Shafarevich

Publisher: Springer Science & Business Media

Published: 1994

Total Pages: 292

ISBN-13: 9783540575542

DOWNLOAD EBOOK

The second volume of Shafarevich's introductory book on algebraic geometry focuses on schemes, complex algebraic varieties and complex manifolds. As with Volume 1 the author has revised the text and added new material, e.g. a section on real algebraic curves. Although the material is more advanced than in Volume 1 the algebraic apparatus is kept to a minimum making the book accessible to non-specialists. It can be read independently of Volume 1 and is suitable for beginning graduate students in mathematics as well as in theoretical physics.


Introduction to Algebraic Geometry

Introduction to Algebraic Geometry

Author: Steven Dale Cutkosky

Publisher: American Mathematical Soc.

Published: 2018-06-01

Total Pages: 498

ISBN-13: 1470435187

DOWNLOAD EBOOK

This book presents a readable and accessible introductory course in algebraic geometry, with most of the fundamental classical results presented with complete proofs. An emphasis is placed on developing connections between geometric and algebraic aspects of the theory. Differences between the theory in characteristic and positive characteristic are emphasized. The basic tools of classical and modern algebraic geometry are introduced, including varieties, schemes, singularities, sheaves, sheaf cohomology, and intersection theory. Basic classical results on curves and surfaces are proved. More advanced topics such as ramification theory, Zariski's main theorem, and Bertini's theorems for general linear systems are presented, with proofs, in the final chapters. With more than 200 exercises, the book is an excellent resource for teaching and learning introductory algebraic geometry.


Lectures on Algebraic Geometry II

Lectures on Algebraic Geometry II

Author: Günter Harder

Publisher: Springer Science & Business Media

Published: 2011-04-21

Total Pages: 376

ISBN-13: 3834881597

DOWNLOAD EBOOK

This second volume introduces the concept of shemes, reviews some commutative algebra and introduces projective schemes. The finiteness theorem for coherent sheaves is proved, here again the techniques of homological algebra and sheaf cohomology are needed. In the last two chapters, projective curves over an arbitrary ground field are discussed, the theory of Jacobians is developed, and the existence of the Picard scheme is proved. Finally, the author gives some outlook into further developments- for instance étale cohomology- and states some fundamental theorems.


Algebraic Geometry II

Algebraic Geometry II

Author: David Mumford

Publisher:

Published: 2015

Total Pages: 0

ISBN-13: 9789380250809

DOWNLOAD EBOOK

Several generations of students of algebraic geometry have learned the subject from David Mumford's fabled "Red Book" containing notes of his lectures at Harvard University. This book contains what Mumford had intended to be Volume II. It covers the material in the "Red Book" in more depth with several more topics added.


Algebraic Geometry

Algebraic Geometry

Author: Robin Hartshorne

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 511

ISBN-13: 1475738498

DOWNLOAD EBOOK

An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.


Algebraic Geometry 2

Algebraic Geometry 2

Author: Kenji Ueno

Publisher: American Mathematical Soc.

Published: 1999

Total Pages: 196

ISBN-13: 9780821813577

DOWNLOAD EBOOK

Algebraic geometry is built upon two fundamental notions: schemes and sheaves. The theory of schemes was explained in Algebraic Geometry 1: From Algebraic Varieties to Schemes. In this volume, the author turns to the theory of sheaves and their cohomology. A sheaf is a way of keeping track of local information defined on a topological space, such as the local holomorphic functions on a complex manifold or the local sections of a vector bundle. To study schemes, it is useful to study the sheaves defined on them, especially the coherent and quasicoherent sheaves.


Positivity in Algebraic Geometry I

Positivity in Algebraic Geometry I

Author: R.K. Lazarsfeld

Publisher: Springer Science & Business Media

Published: 2004-08-24

Total Pages: 414

ISBN-13: 9783540225331

DOWNLOAD EBOOK

This two volume work on Positivity in Algebraic Geometry contains a contemporary account of a body of work in complex algebraic geometry loosely centered around the theme of positivity. Topics in Volume I include ample line bundles and linear series on a projective variety, the classical theorems of Lefschetz and Bertini and their modern outgrowths, vanishing theorems, and local positivity. Volume II begins with a survey of positivity for vector bundles, and moves on to a systematic development of the theory of multiplier ideals and their applications. A good deal of this material has not previously appeared in book form, and substantial parts are worked out here in detail for the first time. At least a third of the book is devoted to concrete examples, applications, and pointers to further developments. Volume I is more elementary than Volume II, and, for the most part, it can be read without access to Volume II.


Fundamental Algebraic Geometry

Fundamental Algebraic Geometry

Author: Barbara Fantechi

Publisher: American Mathematical Soc.

Published: 2005

Total Pages: 354

ISBN-13: 0821842455

DOWNLOAD EBOOK

Presents an outline of Alexander Grothendieck's theories. This book discusses four main themes - descent theory, Hilbert and Quot schemes, the formal existence theorem, and the Picard scheme. It is suitable for those working in algebraic geometry.


Algebraic Geometry II

Algebraic Geometry II

Author: I.R. Shafarevich

Publisher: Springer Science & Business Media

Published: 2013-11-22

Total Pages: 270

ISBN-13: 3642609252

DOWNLOAD EBOOK

This two-part volume contains numerous examples and insights on various topics. The authors have taken pains to present the material rigorously and coherently. This book will be immensely useful to mathematicians and graduate students working in algebraic geometry, arithmetic algebraic geometry, complex analysis and related fields.


Computations in Algebraic Geometry with Macaulay 2

Computations in Algebraic Geometry with Macaulay 2

Author: David Eisenbud

Publisher: Springer Science & Business Media

Published: 2001-09-25

Total Pages: 354

ISBN-13: 9783540422303

DOWNLOAD EBOOK

This book presents algorithmic tools for algebraic geometry, with experimental applications. It also introduces Macaulay 2, a computer algebra system supporting research in algebraic geometry, commutative algebra, and their applications. The algorithmic tools presented here are designed to serve readers wishing to bring such tools to bear on their own problems. The first part of the book covers Macaulay 2 using concrete applications; the second emphasizes details of the mathematics.