This handbook shows how to prevent bearing failure, how to avoid replacement and down-time costs, and how to solve bearing failure problems quickly when they do occur - avoiding delayed orders and lost business. No other handbook covers such a wide range of bearing types and seals, shafts and housing, materials and manufacture. There is no other troubleshooting guide to help technicians and mechanics monitor, mount and dismount, and lubricate correctly. Rolling Bearings Handbook and Troubleshooting Guide puts the right maintenance and diagnostic procedures at your fingertips.
The definitive book on the science of grease lubrication for roller and needle bearings in industrial and vehicle engineering. Grease Lubrication in Rolling Bearings provides an overview of the existing knowledge on the various aspects of grease lubrication (including lubrication systems) and the state of the art models that exist today. The book reviews the physical and chemical aspects of grease lubrication, primarily directed towards lubrication of rolling bearings. The first part of the book covers grease composition, properties and rheology, including thermal and dynamics properties. Later chapters cover the dynamics of greased bearings, including grease life, bearing life, reliability and testing. The final chapter covers lubrications systems – the systems that deliver grease to the components requiring lubrication. Grease Lubrication in Rolling Bearings: Describes the underlying physical and chemical properties of grease. Discusses the effect of load, speed, temperature, bearing geometry, bearing materials and grease type on bearing wear. Covers both bearing and grease performance, including thermo-mechanical ageing and testing methodologies. It is intended for researchers and engineers in the petro-chemical and bearing industry, industries related to this (e.g. wind turbine industry, automotive industry) and for application engineers. It will also be of interest for teaching in post-graduate courses.
This book comprehensively presents the computational design of rolling bearings dealing with many interdisciplinary difficult working fields. They encompass elastohydrodynamics (EHD), Hertzian contact theory, oil-film thickness in elastohydrodynamic lubrication (EHL), bearing dynamics, tribology of surface textures, fatigue failure mechanisms, fatigue lifetimes of rolling bearings and lubricating greases, Weibull distribution, rotor balancing, and airborne noises (NVH) in the rolling bearings. Furthermore, the readers are provided with hands-on essential formulas based on the up-to-date DIN ISO norms and helpful examples for computational design of rolling bearings. The topics are intended for undergraduate and graduate students in mechanical and material engineering, research scientists, and practicing engineers who want to understand the interactions between these working fields and to know how to design the rolling bearings for automotive industry and many other industries.
Rolling Bearing Tribology: Tribology and Failure Modes of Rolling Element Bearings discusses these machine elements that are used to accommodate motion on or about shafts in mechanical systems, with ball bearings, cylindrical roller bearings, spherical roller bearings, and tapered roller bearings reviewed. Each bearing type experiences different kinds of motion and forces with their respective raceway, retainers and guiding flanges. The material in this book identifies the tribology of the major bearing types and how that tribology depends upon materials, surfaces and lubrication. In addition, the book describes the best practices to mitigate common failure modes of rolling element bearings. - Discusses important tribological implications surrounding the performance and durability of rolling element bearings - Describes how the different types of roller bearings work - Explores the reasons behind the failure of roller bearings and presents information on how to mitigate those failures
Simply put, this book explains what exactly needs to be done if a facility wants to progress from being a one, two or three year pump MTBF plant, and wishes to join the leading money-making facilities that today achieve a demonstrated pump MTBF of 8.6 years.